https://www.selleckchem.com/products/prt543.html Nisin is a 34-amino-acid lantibiotic that has been used commercially for almost a century as a food preservative. In order to produce active nisin, Lactococcus lactis requires an 11-gene operon that encodes proteins involved in modification, processing, transport, immunity, and regulation. While the role of each of the 11 proteins is well understood, the location and spatial organization of the biosynthetic machinery that involves NisA, NisB, NisC, NisT, and NisP remain to be determined. In this elegant paper (J. Chen, A. J. van Heel, and O. P. Kuipers, mBio 11e02825-20, 2020, https//doi.org/10.1128/mBio.02825-20), we learn that a NisB dimer is recruited to the "old" pole of a dividing cell, where it assembles with NisC to form a modification complex that can engage with NisA. Unexpectedly, the NisT transporter does not stably assemble into this complex but is distributed around the membrane until it engages with the NisABC complex to transport NisA across the membrane, whereupon it dissociates from NisBC.Although all isolates of the foodborne pathogen Listeria monocytogenes are considered to be pathogenic, epidemiological evidence indicates that certain serovar 4b lineages are more likely to cause severe invasive (neuromeningeal, maternal-fetal) listeriosis. Recently described as L. monocytogenes "hypervirulent" clones, no distinctive bacterial trait has been identified so far that could account for the differential pathogenicity of these strains. Here, we discuss some preliminary observations in experimentally infected mice suggesting that serovar 4b hypervirulent strains may have a hitherto unrecognized capacity for prolonged in vivo survival. We propose the hypothesis that protracted survivability in primary infection foci in liver and spleen-the first target organs after intestinal translocation-may cause L. monocytogenes serovar 4b hypervirulent clones to have a higher probability of secondary dissemination to b