This model is valid in the Wenzel region; it provides guidelines for tuning the wetting properties of inorganic surfaces with random nanoscale topographies.Hydrogen cyanide (HCN) and formaldehyde (H2CO) are key precursors to biomolecules such as nucleobases and amino acids in planetary atmospheres. However, many reactions which produce and destroy these species in atmospheres containing CO2 and H2O are still missing from the literature. We use a quantum chemistry approach to find these missing reactions and calculate their rate coefficients using canonical variational transition state theory and Rice-Ramsperger-Kassel-Marcus/master equation theory at the BHandHLYP/aug-cc-pVDZ level of theory. We calculate the rate coefficients for 126 total reactions and validate our calculations by comparing with experimental data in the 39% of available cases. Our calculated rate coefficients are most frequently within a factor of 2 of experimental values and generally always within an order of magnitude of these values. We discover 45 previously unknown reactions and identify 6 from this list that are most likely to dominate H2CO and HCN production and destruction in planetary atmospheres. We highlight 1O + CH3 → H2CO + H as a new key source and H2CO + 1O → HCO + OH as a new key sink, for H2CO in upper planetary atmospheres. In this effort, we develop an oxygen extension to our consistent reduced atmospheric hybrid chemical network (CRAHCN-O), building off our previously developed network for HCN production in N2-, CH4-, and H2-dominated atmospheres (CRAHCN). This extension can be used to simulate both HCN and H2CO production in atmospheres dominated by any of CO2, N2, H2O, CH4, and H2.Dynamic nuclear polarization (DNP) is a powerful method to enhance nuclear magnetic resonance (NMR) signal intensities, enabling unprecedented applications in life and material science. An ultimate goal is to expand the use of DNP-enhanced solid-state NMR to ultrahigh magnetic fields where optimal spectral resolution and sensitivity are integrated. Trityl-nitroxide (TN) biradicals have attracted significant interest in high-field DNP, but their application to complex (bio)molecules has so far been limited. Here we report a novel postmodification strategy for synthesis of hydrophilic TN biradicals in order to improve their use in biomolecular applications. Initially, three TN biradicals (referred to as NATriPols 1-3) with amino-acid linkers were synthesized. EPR studies showed that the α-position of the amino-acid linkers is an ideal modification site for these biradicals since their electron-electron magnetic interactions are marginally affected by the substituents at this position. On the basis of this finding, we synthesized NATriPol-4 with pyridine disulfide appended at the α-position. Postmodification of NATriPol-4 via thiol-click chemistry resulted in various TN biradicals including hydrophilic NATriPol-5 in a quantitative manner. Interestingly, DNP enhancements at 18.8 T of NATriPols for 13C,15N-proline in a glycerol/water matrix are inversely correlated with their hydrophobicity. Importantly, applications of hydrophilic NATriPol-5 and NATriPol-3 to biomolecules including a globular soluble protein and a membrane targeting peptide reveal significantly improved performance compared to TEMTriPol-1 and AMUPol. Our work provides an efficient approach for one-step synthesis of new polarizing agents with tunable physicochemical properties, thus expediting optimization of new biradicals for biomolecular applications at ultrahigh magnetic fields.Capillary zone electrophoresis-mass spectrometry (CE-MS) is a mature analytical tool for the efficient profiling of (highly) polar and ionizable compounds. However, the use of CE-MS in comparison to other separation techniques remains underrepresented in metabolomics, as this analytical approach is still perceived as technically challenging and less reproducible, notably for migration time. The latter is key for a reliable comparison of metabolic profiles and for unknown biomarker identification that is complementary to high resolution MS/MS. In this work, we present the results of a Metabo-ring trial involving 16 CE-MS platforms among 13 different laboratories spanning two continents. The goal was to assess the reproducibility and identification capability of CE-MS by employing effective electrophoretic mobility (μeff) as the key parameter in comparison to the relative migration time (RMT) approach. For this purpose, a representative cationic metabolite mixture in water, pretreated human plasma, and urine samples spiked with the same metabolite mixture were used and distributed for analysis by all laboratories. The μeff was determined for all metabolites spiked into each sample. The background electrolyte (BGE) was prepared and employed by each participating lab following the same protocol. https://www.selleckchem.com/products/r-hts-3.html All other parameters (capillary, interface, injection volume, voltage ramp, temperature, capillary conditioning, and rinsing procedure, etc.) were left to the discretion of the contributing laboratories. The results revealed that the reproducibility of the μeff for 20 out of the 21 model compounds was below 3.1% vs 10.9% for RMT, regardless of the huge heterogeneity in experimental conditions and platforms across the 13 laboratories. Overall, this Metabo-ring trial demonstrated that CE-MS is a viable and reproducible approach for metabolomics.We report a case of steroid withdrawal syndrome in a 74-year-old woman who was suspected of having an occult exogenous Cushing's syndrome secondary to prolonged traditional complementary medicine use. She presented with non-specific symptoms of lethargy, malaise, and poor oral intake with weight loss for 1 month, and investigations showed suboptimal 9 AM cortisol level. She has responded well to steroid replacement.Heated tobacco products (HTPs), a hybrid between conventional and electronic cigarettes, were first launched in South Korea in June 2017. Owing to advertisements stating that HTPs are odorless, tar-free, and less harmful to health, the sales of HTPs have grown quickly enough to account for about 10% of the total tobacco market in a year. HTP use by young, highly educated, and high-income groups had a significant impact on both the overall tobacco market over the past 3 years and the smoking and quitting behaviors of smokers. Based on national smoking rate statistics, tobacco sales trends, and the number of visitors to smoking cessation clinics, the following changes have been identified (1) The decline in current smoking rates has slowed or rose in some groups. (2) The decline in total cigarette sales has slowed but rose again in the first quarter of 2020. (3) The number of visitors to smoking cessation clinics decreased just after the advent of HTPs. These results may be due to the insufficient support of tobacco regulation policies but also coincide chronologically with the appearance of HTPs in South Korea.