https://www.selleckchem.com/products/leptomycinb.html As an effective drug delivery strategy for traditional antitumor drugs, the stimulus-responsive albumin-based prodrugs are getting more and more attention. These prodrugs only release drugs in specific tumor microenvironments, which can prevent premature release of the drug in the circulation. Tumor hypoxia is a fundamental feature of the solid tumor microenvironment. As a hypoxia-activated linker, the 5-position branched linker of 1-methyl-2-nitro-5-hydroxymethylimidazole can be a trigger for albumin-based prodrugs. In this study, we report the synthesis and biological evaluation of the hypoxia-activated albumin-binding prodrug Mal-azo-Exatecan. After intravenous administration, the maleimide on the side chain can rapidly bind to endogenous albumin, enabling the prodrugs to accumulate in tumors, where tumor-associated hypoxia microenvironments trigger the selective release of Exatecan. The 5-position branched linker of 1-methyl-2-nitro-5-hydroxymethylimidazole as a cleavable linker has high plasma stability and does not cause Exatecan release from HSA-azo-Exatecan during circulation in vivo, avoiding systemic side effects caused by Exatecan.Excess water production is a common and extremely serious problem during the process of reservoir development, especially in the middle and later stages of unconsolidated sandstone reservoirs. High water content ratios will negatively affect the recovery efficiency and equipment safety of oil and gas wells. In this study, a hydrophobic quartz sand proppant was prepared with 1,1,1,3,3, 3-hexamethyldisilazane (HMDS) for gravel packing technology. The capillary resistance of hydrophobic quartz sand beds to water was used to achieve water inhibition and oil enhancement. Then, a theoretical capillary bundle model of a quartz sand bed was developed to predict the capillary resistance and water blocking capacity of the quartz sand bed. An evaluation of the experiment results shows t