https://www.selleckchem.com/products/ferrostatin-1.html This study investigated the effect of a recoverable sulphuric acid and sodium hydroxide-modified pinewood (MOP) as a bulking agent during sewage sludge and sawdust composting (MOPC), with a control experiment using unpretreated pinewood (UNP; UNPC) as the bulking agent. Results show that addition of MOP effectively promoted the degradation of organic matter during composting. The maximum temperature increased by 1.50 °C and the high temperature period (T > 50 °C) of composting was extended 4 days longer than the control experiment. Furthermore, MOP addition reduced the loss of nitrogen by 9.40%. High-throughput sequencing analysis showed that the bacterial communities in the UNPC and MOPC treatments were significantly different. Pseudoxanthomonas was the dominant bacteria during the thermophilic and cooling phases of the MOPC treatment. In addition, the recycling efficiency of the UNP and MOP was 99.18% and 99.37%, respectively. Aerobic denitrification is attracting increasing attention since its advantage of complete nitrogen removal in a single aerobic reactor with simplified configurations. This study investigated the nitrate kinetic affinity (half-saturation index, Km) by an isolated aerobic denitrifier named P. balearica strain RAD-17. It turned out that strain RAD-17 had a high Km of 162.5 mg-N/L and maximum nitrate reduction rate of 21.7 mg-N/(L•h), enabling it to treat high-strength nitrogen wastewater with high efficiency. Further analysis illustrated that Km was the critical value for the change of growth yield rate along initial nitrate concentrations. Nitrogen balance results elucidated an opposite nitrogen flux to cell synthesis and nitrogen loss during aerobic denitrification. Moreover, the expression of functional genes provided proofs for these phenotypic results at transcriptional level. Consequently, Km could be an indicator for nitrate flux division directing to respiration and assimilation i