https://www.selleckchem.com/products/ve-822.html However, induction of IκBζ and the resultant cytokine and chemokine productions were significantly inhibited by pretreatment with an NF-κB inhibitor. The deletion of IκBζ did not affect the phosphorylation of ERK, p38 MAPK, or JNK by IL-33, and the treatment with inhibitors of these mitogen-activated kinases failed to abolish the expression of Nfkbiz Our findings suggest that IκBζ augments IL-33-dependent cytokine and chemokine production in BMMCs through the action of NF-κB. Copyright © 2020 by The American Association of Immunologists, Inc.Fumarate is a tricarboxylic acid cycle metabolite whose intracellular accumulation is linked to inflammatory signaling and development of cancer. In this study, we demonstrate that endogenous fumarate accumulation upregulates surface expression of the immune stimulatory NK group 2, member D (NKG2D) ligands ULBP2 and ULBP5. In agreement with this, accumulation of fumarate by the therapeutic drug dimethyl fumarate (DMF) also promotes ULBP2/5 surface expression. Mechanistically, we found that the increased ULBP2/5 expression was dependent on oxidative stress and the antioxidants N-acetylcysteine and glutathione (GSH) abrogated ULBP2/5 upregulated by DMF. Fumarate can complex with GSH and thereby exhaust cells of functional GSH capacity. In line with this, inhibition of GSH reductase (GR), the enzyme responsible for GSH recycling, promoted ULBP2/5 surface expression. Loss of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) associates with a malignant form of renal cancer characterized by fumarate accumulation and increased production of reactive oxygen species, highlighting fumarate as an oncometabolite. Interestingly, FH-deficient renal cancer cells had low surface expression of ULBP2/5 and were unresponsive to DMF treatment, suggesting that the fumarate-stimulating ULBP2/5 pathway is abrogated in these cells as an immune-evasive strategy. Together, our data show that ULBP