https://www.selleckchem.com/products/Eloxatin.html The size distribution and formation of secondary inorganic aerosol play a key role in the increasing PM2.5 concentration. Size-segregated data including mass, number, and chemical component concentrations were obtained during a haze episode from January 12 to 23 in Zhengzhou to gain insight into the dominant factors for the growth of PM2.5. PM2.5 levels during two local processes (LP1 and LP2) were mainly affected by the accumulation and secondary formation of local pollutants. The transport process (TP) was affected by the air mass transported from the northern area of Zhengzhou. Results show that the growth of particle mass concentration in LP1 mainly occurred in the size range of 400-640 nm and 640-1000 nm. With the aggravated particles increases (LP2), 640-1000 nm and 1-1.6 μm particles dominated the increasing PM2.5 concentration. The particles carried by northern air mass (TP) were concentrated in the size range of 1-1.6 μm. Variation trends of hourly PM2.5 chemical components and size distribution of w completely transformed SO42- carried by air masses. Moreover, droplet-mode particles exhibited moderate acidity, which enhanced the gas-particle partitioning of NH3(g)/NH4+(a).Depiction on an energetic chain in terms of assimilation, allocation and consumption as well as the linkage between energetic alteration and physiological process was performed in blue mussel Mytilus edulis coping with tetrabromodiphenyl ether (BDE-47) based on a 21-day bioassay to shed light on the possible mechanism from energetic perspective. The filtration was hindered along with BDE-47 concentration increment and the influence of digestion was suggested according to the combination of the digestive enzymatic activities' alteration and digestive gland tissue impairment, both of which decided the energy availability reduction. Energy consumption indicated by the electron transport system activity was firstly inhibited while was greatly