https://www.selleckchem.com/products/pj34-hcl.html 44, -219.31) and weekly sitting time increased (MD -106.76; CI -71.85, -141.67). In the group analysis, differences were observed in relation to gender, year of study, BMI, alcohol consumption, tobacco use, symptoms of anxiety/depression, Mediterranean diet, living situation and stage of change. The results showed an increase in both physical activity and sitting time globally and by group.This paper describes an image enhancement method of computational reconstruction for 3-D images with multiple parallax image arrays in diffraction grating imaging. A 3-D imaging system via a diffraction grating provides a parallax image array (PIA) which is a set of perspective images of 3-D objects. The parallax images obtained from diffraction grating imaging are free from optical aberrations such as spherical and chromatic aberrations that are always involved in the 3-D imaging via a lens array. The diffraction grating imaging system for 3-D imaging also can be made at a lower cost system than a camera array system. However, the parallax images suffer from the speckle noise due to a coherent source; also, the noise degrades image quality in 3-D imaging. To remedy this problem, we propose a 3-D computational reconstruction method based on multiple parallax image arrays which are acquired by moving a diffraction grating axially. The proposed method consists of a spatial filtering process for each PIA and an overlapping process. Additionally, we provide theoretical analyses through geometric and wave optics. Optical experiments are conducted to evaluate our method. The experimental results indicate that the proposed method is superior to the existing method in 3-D imaging using a diffraction grating.One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system