https://www.selleckchem.com/products/Vorinostat-saha.html This protocol describes the use of the deterministic barcoding in tissue for spatial omics sequencing platform to construct a multi-omics atlas on fixed frozen tissue samples. This approach uses a microfluidic-based method to introduce combinatorial DNA oligo barcodes directly to the cells in a tissue section fixed on a glass slide. This technique does not directly resolve single cells but can achieve a near-single-cell resolution for spatial transcriptomics and spatial analysis of a targeted panel of proteins. For complete details on the use and execution of this protocol, please refer to Liu et al. (2020).Preparation of long single-stranded (ss)DNA in large quantities with high efficiency and purity remains a synthetic challenge. Here, we present a protocol for using DNA-hydrolyzing DNA enzymes (deoxyribozymes) for efficient biotechnological production of milligrams of ssDNA with a customizable sequence up to a few kilobases. Our protocol provides a convenient yet economical way to store the sequence information of target ssDNA on phages for selective mass production on demand. For complete details on the use and execution of this protocol, please refer to Jia et al. (2021).Correlation of 3D images acquired on different microscopes can be a daunting prospect even for experienced users. This protocol describes steps for registration of images from soft X-ray absorption contrast imaging and super-resolution fluorescence imaging of hydrated biological materials at cryogenic temperatures. Although it is developed for data generated at synchrotron beamlines that offer the above combination of microscopies, it is applicable to all analogous imaging systems where the same area of a sample is examined using successive non-destructive imaging techniques. For complete details on the use and execution of this protocol, please refer to Kounatidis et al. (2020).Here, we present a revised protocol to derive neuroepitheli