Respiratory rate is a fundamental vital sign that is sensitive to different pathological conditions (e.g., adverse cardiac events, pneumonia, and clinical deterioration) and stressors, including emotional stress, cognitive load, heat, cold, physical effort, and exercise-induced fatigue. The sensitivity of respiratory rate to these conditions is superior compared to that of most of the other vital signs, and the abundance of suitable technological solutions measuring respiratory rate has important implications for healthcare, occupational settings, and sport. However, respiratory rate is still too often not routinely monitored in these fields of use. This review presents a multidisciplinary approach to respiratory monitoring, with the aim to improve the development and efficacy of respiratory monitoring services. We have identified thirteen monitoring goals where the use of the respiratory rate is invaluable, and for each of them we have described suitable sensors and techniques to monitor respiratory rate in specific measurement scenarios. We have also provided a physiological rationale corroborating the importance of respiratory rate monitoring and an original multidisciplinary framework for the development of respiratory monitoring services. This review is expected to advance the field of respiratory monitoring and favor synergies between different disciplines to accomplish this goal.Obesity as an independent risk factor for cardiovascular diseases (CVDs) leads to an increase in morbidity, mortality, and a shortening of life span. The changes in heart structure and function as well as metabolic profile are caused by obese people, including those free of metabolic disorders. Obesity alters heart function structure and affects lipid and glucose metabolism, blood pressure, and increase inflammatory cytokines. Adipokines, specific cytokines of adipocytes, are involved in the progression of obesity and the associated co-morbidities. In the current study, we review the scientific evidence on the effects of obesity on CVDs, focusing on the changes in adipokines. Several adipokines have anti-inflammatory and cardioprotective effects comprising omentin, apelin, adiponectin, and secreted frizzled-related protein (Sfrp-5). Other adipokines have pro-inflammatory impacts on the cardiovascular system and obesity including leptin, tumor necrosis factor (TNF), retinol-binding protein4 (RBP-4), visfatin, resistin, and osteopontin. We found that obesity is associated with multiple CVDs, but can only occur in unhealthy metabolic patients. However, more studies should be designed to clarify the association between obesity, adipokine changes, and the occurrence of CVDs.The petals of the saffron crocus (Crocus sativus L.) are considered a waste material in saffron production, but may be a sustainable source of natural biologically active substances of nutraceutical interest. The aim of this work was to study the cardiovascular effects of kaempferol and crocin extracted from saffron petals. The antiarrhythmic, inotropic, and chronotropic effects of saffron petal extract (SPE), kaempferol, and crocin were evaluated through in vitro biological assays. The antioxidant activity of kaempferol and crocin was investigated through the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay using rat cardiomyoblast cell line H9c2. https://www.selleckchem.com/products/selonsertib-gs-4997.html The MTT assay was applied to assess the effects of kaempferol and crocin on cell viability. SPE showed weak negative inotropic and chronotropic intrinsic activities but a significant intrinsic activity on smooth muscle with a potency on the ileum greater than on the aorta EC50 = 0.66 mg/mL versus EC50 = 1.45 mg/mL. Kaempferol and crocin showed a selective negative inotropic activity. In addition, kaempferol decreased the contraction induced by KCl (80 mM) in guinea pig aortic and ileal strips, while crocin had no effect. Furthermore, following oxidative stress, both crocin and kaempferol decreased intracellular ROS formation and increased cell viability in a concentration-dependent manner. The results indicate that SPE, a by-product of saffron cultivation, may represent a good source of phytochemicals with a potential application in the prevention of cardiovascular diseases.Various methods exist to measure physical activity. Subjective methods, such as diaries and surveys, are relatively inexpensive ways of measuring one's physical activity; however, they are prone to measurement error and bias due to self-reporting. Wearable accelerometers offer a non-invasive and objective measure of one's physical activity and are now widely used in observational studies. Accelerometers record high frequency data and each produce an unlabeled time series at the sub-second level. An important activity to identify from the data collected is walking, since it is often the only form of activity for certain populations. Currently, most methods use an activity summary which ignores the nuances of walking data. We propose methodology to model specific continuous responses with a functional linear model utilizing spectra obtained from the local fast Fourier transform (FFT) of walking as a predictor. Utilizing prior knowledge of the mechanics of walking, we incorporate this as additional information for the structure of our transformed walking spectra. The methods were applied to the in-the-laboratory data obtained from the Developmental Epidemiologic Cohort Study (DECOS).With the persistently growing popularity of internet traffic, telecom operators are forced to provide high-capacity, cost-efficient, and performance-adaptive connectivity solutions to fulfill the requirements and increase their returns. However, optical networks that make up the core of the Internet gradually reached physical transmission limits. In an attempt to provide new solutions emerged, the Space-Division Multiplexing Elastic Optical Network emerged as one of the best ways to deal with the network depletion. However, it is necessary to establish lightpaths using routing, modulation, spectrum, and core allocation (RMSCA) algorithms to establish connections in these networks. This article proposes a crosstalk-aware RMSCA algorithm that uses a multi-path and mapping scheme for improving resource allocation. The results show that the proposed algorithm decreases the blocking ratio by up to four orders of magnitude compared with other RMSCA algorithms in the literature.