https://www.selleckchem.com/screening-libraries.html Recently, we introduced a bi-objective optimization approach based on dose-volume indices to automatically create clinically good HDR prostate brachytherapy plans. To calculate dose-volume indices, a reconstruction algorithm is used to determine the 3D organ shape from 2D contours, inevitably containing settings that influence the result. We augment the optimization approach to quickly find plans that are robust to differences in 3D reconstruction. Studied reconstruction settings were interpolation between delineated organ contours, overlap between contours, and organ shape at the top and bottom contour. Two options for each setting yields 8 possible 3D organ reconstructions per patient, over which the robust model defines minimax optimization. For the original model, settings were based on our treatment planning system. Both models were tested on data of 26 patients and compared by re-evaluating selected optimized plans both in the original model (1 organ reconstruction, the difference determines the cosf 3D organ reconstruction settings, can be obtained using our robust optimization approach. With its limited effect on total runtime, our approach therefore offers a way to account for dosimetry uncertainties that result from choices in organ reconstruction settings that is viable in clinical practice.We performed a theoretical study of the chemical ordering and surface segregation of Pt-Ag nanoalloys in the range of size from 976 to 9879 atoms (3.12 to 6.76 nm). We used an original many-body potential able to stabilize the L1$_1$ ordered phase at equiconcentration leading to a strong silver surface segregation. Based on a recent experimental study where nanoparticles up to 2.5 nm have been characterized by high transmission electron microscopy with the L1$_1$ ordered phase in the core and a silver surface shell, we predict in our model via Monte Carlo simulations that the lower energy configuration is more compli