https://www.selleckchem.com/products/ABT-888.html The number of long noncoding RNAs (lncRNAs) with characterized developmental and cellular functions continues to increase, but our understanding of the molecular mechanisms underlying lncRNA functions, and how they are dictated by RNA sequences, remains limited. Relatively short, conserved sequence motifs embedded in lncRNA transcripts are often important determinants of lncRNA localization, stability and interactions. Identifying such RNA motifs remains challenging due to the substantial length of lncRNA transcripts and the rapid evolutionary turnover of lncRNA sequences. Nevertheless, the recent discovery of specific RNA elements, together with their experimental interrogation, has enabled the first step in classifying heterogeneous lncRNAs into sub-groups with similar molecular mechanisms and functions. In this Review, we focus on lncRNAs with roles in development, cell differentiation and normal physiology in vertebrates, and we discuss the sequence elements defining their functions. We also summarize progress on the discovery of regulatory RNA sequence elements, as well as their molecular functions and interaction partners.Cryptorchidism is the most common urologic birth defect in men and is a predisposing factor of male infertility and testicular cancer, yet the etiology remains largely unknown. E2F1 microdeletions and microduplications contribute to cryptorchidism, infertility and testicular tumors. Although E2f1 deletion or overexpression in mice causes spermatogenic failure, the mechanism by which E2f1 influences testicular function is unknown. This investigation revealed that E2f1-null mice develop cryptorchidism with severe gubernacular defects and progressive loss of germ cells resulting in infertility and, in rare cases, testicular tumors. It was hypothesized that germ cell depletion resulted from an increase in WNT4 levels. To test this hypothesis, the phenotype of a double-null mouse model lacking both