https://www.selleckchem.com/products/vorapaxar.html PbCrO3 features an unusual charge distribution Pb0.52+Pb0.54+Cr3+O3 with Pb charge disproportionation at ambient pressure. A charge transfer between Pb and Cr is induced by the application of pressure resulting in Pb2+Cr4+O3 charge distribution and a large volume collapse. Here, structural and charge distribution changes in PbCr1-xVxO3 are investigated. Despite a cubic crystal structure in 0 ≤ x ≤ 0.60, discontinuous reduction in the unit cell volume was observed between x = 0.35 and 0.40. Hard X-ray photoemission spectroscopy confirmed the change in Pb charge state from the coexisting Pb2+ and Pb4+ at x = 0.35 to single Pb2+ at x = 0.40. This indicates that V substitution stabilizes the high pressure cubic Pb2+Cr4+O3-type phase. With further increase in the V substitution, the PbVO3-type polar tetragonal phase appeared at x = 0.80.Biocompatible self-healing hydrogels present an effective application as drug-releasing vehicles for tissue engineering and wound repairing. At the same time, the effective hemostatic property of the hydrogels also improves the application property as wound dressing materials. In this research, the PNIPAM-bearing acylhydrazide P(NIPAM-co-AH) was synthesized and then hemostatic polyphosphate (PolyP) was imported to prepare polyphosphate-conjugated P(NIPAM-co-AH) (PNAP). Through the acylhydrazone connection of PNAP and aldehyde functional PEO (PEO DA), the self-healing hydrogel with a hemostatic property was fabricated with good flexibility and sealing effect. The resultant hydrogels kept excellent biocompatibility and showed controlled drug release behavior. More importantly, the hydrogel accelerated the coagulation rate in vitro and presented a strong hemostatic effect as the binder in the hemorrhage model in vivo, which endow the hemostatic hydrogel with a very useful drug delivery carrier for wound healing applications or first aid treatment of the wounded in critical situations.The la