https://www.selleckchem.com/products/dtnb.html Synthetic water-soluble polymers are increasingly used for gene delivery, stabilization, and delivery of proteins, and as prospective antimicrobial and antiviral agents. Therefore, study of their interaction with lipid membranes is of special importance. Herein, we studied interaction of aliphatic cationic ionenes (recently tested for gene delivery efficiency) differed in the length of spacer between charged groups (and therefore in charge density) with anionic lipid membrane. A range of approaches such as measurement of particle size and electrophoretic mobility, liposome integrity, ATR-FTIR spectroscopy, isothermal titration calorimetry as well as atomistic molecular modeling was used. Ionene with a spacer of 10 methylene groups has been shown to be incorporated into membrane and interact with its inner hydrophobic part in contrast to ionenes with shorter spacer, which interacted only with outer polar head groups of lipids staying at the water-membrane interface. It affects membrane integrity and results in a different behavior of the polymer-liposome complexes. These findings are relevant for potential biomedical application of ionenes, including creation of composite polymer-liposome systems for drug delivery.The icephobicity property of multifunctional surfaces has been widely studied due to their potential application in the aerospace field. Herein, a controllable CNW/PDMS biomimetic nanocomposite film with a superhydrophobic surface is fabricated. The microcolumns are etched on the surface of the biomimetic nanocomposite to provide superhydrophobicity. Two defense strategies of biomimetic nanocomposites are proposed while passive anti-icing and active electrothermal deicing behaviors of the biomimetic nanocomposite are experimentally studied. It is found that the initial nucleation time of a single water droplet is delayed by 353.3 s on the superhydrophobic surface relative to the hydrophilic surface. The adhesio