https://www.selleckchem.com/btk.html Common bean (Phaseolus vulgaris L.) is a short-day plant and its flowering time, and consequently, pod yield and quality is influenced by photoperiod. In this study, the photoperiodic-sensitive variety 'Hong jin gou', which flowers 31 days (d) earlier in short-day than in long-day, was used as the experimental material. Samples were collected to determine the growth and photosynthetic parameters in each daylength treatment, and transcriptome and metabolome data were conducted. We identified eight genes related to flowering by further screening for differentially expressed genes. These genes function to regulate the biological clock. The combination of differentially expressed genes and metabolites, together with the known regulation network of flowering time and the day-night expression pattern of related genes allow us to speculate on the regulation of flowering time in the common bean and conclude that TIMING OF CAB EXPRESSION1 (TOC1) plays a pivotal role in the network and its upregulation or downregulation causes corresponding changes in the expression of downstream genes. The regulatory network is also influenced by gibberellic acid (GA) and jasmonic acid (JA). These regulatory pathways jointly comprise the flowering regulatory network in common bean.The tradeoff between cost and efficiency is omnipresent in organisms. Specifically, how the evolutionary force shapes the tradeoff between biosynthetic cost and translation efficiency remains unclear. In the cancer community, whether the adjustment of cost-efficiency tradeoff acts as a strategy to facilitate tumor proliferation and contributes to oncogenesis is uninvestigated. To address this issue, we retrieved the gene expression profile in various cancer types and the matched normal samples from The Cancer Genome Atlas (TCGA). We found that the highly expressed genes in cancers generally have higher tAI/nitro ratios than those in normal samples. This is possibly caused by the