https://www.selleckchem.com/products/phycocyanobilin.html 05 and Cohen's d 0.254 for the control group and 0.685 for the experimental group). Mann-Whitney results suggested that VR and MT as a therapeutic intervention have better outcomes than standard physiotherapy in range of motion (p less then 0.05, Cohen's d 0.693), muscle strength (p less then 0.05, Cohen's d 0.924), lower extremity functionality (p less then 0.05, Cohen's d 0.984) and postural balance (p less then 0.05, Cohen's d 0.936). Our research suggests that VR therapy associated with MT may successfully substitute classic physiotherapy in lower extremity rehabilitation after stroke.Silicon dioxide, in the form of nanoparticles, possesses unique physicochemical properties (size, shape, and a large surface to volume ratio). Therefore, it is one of the most promising materials used in biomedicine. In this paper, we compare the biological effects of both mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material. Both SEM and TEM investigations confirmed the size range of tested nanoparticles was between 6 and 20 nanometers and their amorphous structure. The cytotoxic activity of the compounds and intracellular ROS were determined in relation to cells HMEC-1 and erythrocytes. The cytotoxic effects of SiO2 NPs were determined after exposure to different concentrations and three periods of incubation. The same effects for endothelial cells were tested under the same range of concentrations but after 2 and 24 h of exposure to erythrocytes. The cell viability was measured using spectrophotometric and fluorimetric assays, and the impact of the nanoparticles on the level of intracellular ROS. The obtained results indicated that bioSiO2 NPs, present higher toxicity than pyrogenic NPs and have a higher influence on ROS production. Mesoporous silica nanoparticles show good hemocompatibility but after a 24 h incubation of erythrocytes with silica, the increase in hemolysis process, the de