https://www.selleckchem.com/products/pd-1-pd-l1-inhibitor-3.html Regulatory T (Treg) cells, a subtype of immunosuppressive CD4+ T cells, are vital for maintaining immune homeostasis in healthy people. Forkhead box protein P3 (FOXP3), a member of the forkhead-winged-helix family, is the pivotal transcriptional factor of Treg cells. The expression, post-translational modifications, and protein complex of FOXP3 present a great impact on the functional stability and immune plasticity of Treg cells in vivo. In particular, the mutation of FOXP3 can result in immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, which is a rare genetic disease mostly diagnosed in early childhood and can soon be fatal. IPEX syndrome is related to several manifestations, including dermatitis, enteropathy, type 1 diabetes, thyroiditis, and so on. Here, we summarize some recent findings on FOXP3 regulation and Treg cell function. We also review the current knowledge about the underlying mechanism of FOXP3 mutant-induced IPEX syndrome and some latest clinical prospects. At last, this review offers a novel insight into the role played by the FOXP3 complex in potential therapeutic applications in IPEX syndrome. Noncoding RNAs (ncRNAs) play important roles in many biological processes and provide materials for evolutionary adaptations beyond protein-coding genes, such as in the arms race between the host and pathogen. However, currently, a comprehensive high-resolution analysis of primate genomes that includes the latest annotated ncRNAs is not available. Here, we developed a computational pipeline to estimate the selections that act on noncoding regions based on comparisons with a large number of reference sequences in introns adjacent to the interested regions. Our method yields result comparable with those of the established codon-based method and phyloP method for coding genes; thus, it provides a holistic framework for estimating the selection on the entire genome.