https://www.selleckchem.com/products/Trichostatin-A.html A novel deep learning algorithm was developed for the disease identification stage, where techniques including adaptive feature infusion and multi-modal attentive fusion were introduced to fuse structured and text data together. Clinical notes from over 12000 patients with respiratory diseases were used to train a deep learning model, and clinical notes from a non-overlapping set of about 1800 patients were used to evaluate the performance of the trained model. The average precisions (AP) for pneumonia, RTI, bronchitis and asthma are 0.878, 0.857, 0.714, and 0.825, respectively, achieving a mean AP (mAP) of 0.819. These results demonstrate that our proposed fine-grained diagnosis-assistant system provides precise identification of the diseases.The COVID-19 pandemic has resulted in a rapidly growing quantity of scientific publications from journal articles, preprints, and other sources. The TREC-COVID Challenge was created to evaluate information retrieval (IR) methods and systems for this quickly expanding corpus. Using the COVID-19 Open Research Dataset (CORD-19), several dozen research teams participated in over 5 rounds of the TREC-COVID Challenge. While previous work has compared IR techniques used on other test collections, there are no studies that have analyzed the methods used by participants in the TREC-COVID Challenge. We manually reviewed team run reports from Rounds 2 and 5, extracted features from the documented methodologies, and used a univariate and multivariate regression-based analysis to identify features associated with higher retrieval performance. We observed that fine-tuning datasets with relevance judgments, MS-MARCO, and CORD-19 document vectors was associated with improved performance in Round 2 but not in Round 5. Though the relatively decreased heterogeneity of runs in Round 5 may explain the lack of significance in that round, fine-tuning has been found to improve search performanc