https://www.selleckchem.com/CDK.html 44 SNPs, was associated with TE with HR 1.76 (95% CI 1.23-2.52, empirical p-value 0.02). Our results support an underlying genetic predisposition for TE in adolescents with ALL and should be explored further in future TE risk prediction models.Gas bubbles are of interest in various applications. The study of their movement is of importance. Gas bubbles are typically formed under liquids. Movement of liquid droplets on bioinspired conical surfaces is known to be facilitated by the Laplace pressure gradient. These conical surfaces, with various wettabilities and shapes, can also be used to move gas bubbles. In this study, effect of various liquids on movement of air bubble under liquid was studied. It was found that liquids with high surface tension and high density are more efficient in moving air bubbles. High surface tension and higher density increases the Laplace pressure gradient force and the buoyancy force, respectively, which drive under liquid air bubbles.The microcapsule containing phase change materials(microPCMs) with high efficiency of photothermal conversion was prepared by in-situ polymerization via ultrasonic dispersion which used capric acid(CA) as core material and nano silicon carbide(nano-SiC) modified melamine-urea-formaldehyde(MUF) resin as wall material. The nano-SiC has good cross-linking with MUF shell. When the nano-SiC was added in microPCMs, it behaves superior thermal conductivity and thermal storage properties. When the content of nano-SiC arrives 6 wt%, the performance of the microPCMs whose encapsulation efficiency is 65.7% is the best, and thermal conductivity increase by 59.2%. Due to the proper amount of nano-SiC added into the MUF shell, it can effectively fill the tiny holes on the MUF shell. Therefore, the microPCMs with appropriate nano-SiC have better leakage prevention. It is worth noting that MicroPCMs-6% and MicroPCMs-8% show excellent photothermal conversion property, and the phototherma