https://www.selleckchem.com/products/ABT-263.html Nano-structured shunts were durable, leak-proof, and demonstrated biocompatibility and patency in rabbit eyes. Importantly, both designs prevented hypotony and significantly reduced IOP for 27 days in normotensive rabbits, demonstrating potential for clinical utility.Cancer is an enormous burden of disease globally. Today, more people die from cancer than a combination of several diseases. And in females, breast and cervical malignancies remain the most common types. Currently, cervical and breast cancer are the most diagnosed gynecological cancer type amongst black females in the Southern Sahara while amongst males prostate cancer is on the upward trend. With many of them still dependent on medicinal plants as a form of therapy and the need to identify new therapeutic agents, we have identified a commonly used medicinal plant Tulbaghia violacea Harv. commonly known as Itswele lomlambo (Xhosa), wilde knoffel (Afrikaans) and Isihaqa (zulu) to evaluate its anticancer properties at a molecular biology level. In this study, we evaluated the molecular mechanism of T. violacea extracts in regulating cell death in various cancer cell lines. To achieve this, T. violacea was collected, dried before crushing into a fine ground powder. Three organic solvents namely, methanol, hexane, and butanol at 10 g per 100 mL were used as extraction solvents. Each cell line was treated with varying concentrations of the plant extract to identify the half-maximal inhibitory concentration (IC50). The IC 50 was later used to analyse if the extracts were inducing apoptosis using annexin V analysis. Furthermore, the molecular mechanisms by which apoptosis was induced was analysed by qPCR, western blots. All three extracts exhibited anticancer activity with the most cytotoxic being methanol extract. p53 expression was significantly increased in treated cells that correlated with increased caspase activity. The results point to possible activatio