Care left undone is a worldwide problem for both the quality of health care and the safety of patients. In surgical nursing, care left undone is a critical issue arising from the intensive pace of work, invasive procedures and the pressure for efficiency. Previous knowledge about care left undone in surgical contexts is missing. To describe care left undone and its relationship to nursing and organisational characteristics in the surgical wards of regional and central hospitals in Estonia. A cross-sectional study with an online questionnaire took place from June to October of 2018. The target population (N=570) consisted of nurses working in the surgical wards of two regional and three central hospitals at the time of the study. The data were analysed using descriptive statistics and Fisher's exact test. The open-ended questions were analysed with deductive content analysis. Nursing care in the surgical wards was reported as having been left undone sometimes or often by 88% of the nurses. Most often, the documentation and evaluation of care plans (33%) were reported as undone and most rarely, disinfection measures were left undone (5%). Nurses with a shorter employment history left care undone more frequently, and when the number of patients per nurse increased, the amount of care left undone increased as well. More than half of the participants (59%) considered work organisation to be the cause of care left undone. Work organisation and staffing in surgical wards require more attention at the management level, as nursing care left undone occurred to a significant degree in the investigated wards, and more than half of the nurses considered work organisation to be the reason for care left undone. Work organisation and staffing in surgical wards require more attention at the management level, as nursing care left undone occurred to a significant degree in the investigated wards, and more than half of the nurses considered work organisation to be the reason for care left undone.Cardiovascular diseases (CVDs) are an ever-growing problem and are the most common cause of death worldwide. The uncontrolled production of reactive oxygen species (ROS) and the activation of ROS associated with various cell signaling pathways with oxidative cellular damage are the most common pathological conditions connected with CVDs including endothelial dysfunction, hypercontractility of vascular smooth muscle, cardiac hypertrophy and heart failure. The nuclear factor E2-related factor 2 (Nrf2) is a basic leucine zipper redox transcription factor, together with its negative regulator, kelch-like ECH-associated protein 1 (Keap1), which serves as a key regulator of cellular defense mechanisms to combat oxidative stress and associated diseases. Multiple lines of evidence described here support the cardiac protective property of Nrf2 in various experimental models of cardiac related disease conditions. In this review, we emphasized the molecular mechanisms of Nrf2 and described the detailed outline of current findings on the therapeutic possibilities of the Nrf2 activators specifically from herbal origin in various CVDs. Based on evidence from various preclinical experimental models, we have highlighted the activation of Nrf2 pathway as a budding therapeutic option for the prevention and treatment of CVDs, which needs further investigation and validation in the clinical settings.A simple, sensitive, and fully automated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous quantification of cilostazol (CIL) and its active metabolite, 3,4-dehydro cilostazol (CIL-M), in human plasma. Plasma samples were processed by protein precipitation in 2 mL 96-deep-well plates, and all liquid transfer steps were performed through robotic liquid handling workstation, enabling the whole procedure fast, compared to the reported methods. Separation of analytes was successfully achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) with mobile phase A (5 mM ammonium formate containing 0.1% formic acid) and mobile phase B (methanol) at a flow rate of 0.30 mL min-1 . https://www.selleckchem.com/ The total run time was 3.5 min per sample. Mass spectrometric detection was conducted by electrospray ion source in positive ion multiple reaction monitoring mode. Calibration curves were linear over the concentration range of 1.0-800 ng·mL-1 for CIL and 0.05-400 ng·mL-1 for CIL-M. The coefficient of variation for the assay's precision was 12.3%, and the accuracy was 88.8-99.8%. It was fully validated and successfully applied to assess the influence of CYP genotypes on the pharmacokinetics of CIL after oral administration of 50 mg tablet formulations of CIL to healthy Chinese volunteers. The results suggest that, in Chinese population, the genotype of CYP3A5 affects the plasma exposure of CIL.Calcium-dependent activator protein for secretion 1 (CAPS1) is a SNARE accessory protein that facilitates formation of the SNARE complex to enable neurotransmitter release. Messenger RNAs encoding CAPS1 are subject to a site-specific adenosine-to-inosine (A-to-I) editing event resulting in a glutamate-to-glycine (E-to-G) substitution in the C-terminal domain of the encoded protein product. The C-terminal domain of CAPS1 is necessary for its synaptic enrichment and Cadps RNA editing has been shown previously to enhance the release of neuromodulatory transmitters. Using mutant mouse lines engineered to solely express CAPS1 protein isoforms encoded by either the non-edited or edited Cadps transcript, primary neuronal cultures from mouse hippocampus were used to explore the effect of Cadps editing on neurotransmission and CAPS1 synaptic localization at both glutamatergic and GABAergic synapses. While the editing of Cadps does not alter baseline evoked neurotransmission, it enhances short-term synaptic plasticity, specifically short-term depression, at inhibitory synapses. Cadps editing also alters spontaneous inhibitory neurotransmission. Neurons that solely express edited Cadps have a greater proportion of synapses that contain CAPS1 than neurons that solely express non-edited Cadps for both glutamatergic and GABAergic synapses. Editing of Cadps transcripts is regulated by neuronal activity, as global network stimulation increases the extent of transcripts edited in wild-type hippocampal neurons, whereas chronic network silencing decreases the level of Cadps editing. Taken together, these results provide key insights into the importance of Cadps editing in modulating its own synaptic localization, as well as the modulation of neurotransmission at inhibitory synapses in hippocampal neurons.