sitive attitude of tourists for traveling to countries with healthy air can be earned.Nanoemulsion technology is an alternative candidate to overcome antibiotic resistance in pathogenic bacteria. The aim of this research was nanoemulsion production from the essential oil of Alhagi maurorum and the characterization of this nanostructure. Nanoemulsion of essential oil from A. maurorum was prepared using the ionotropic gelation method and chitosan as a nano-carrier. Scanning Electron Microscopy (SEM) was used to characterize the synthesized nanoparticles. The effect of nanoemulsion on the antibacterial, antibiofilm, and plasmid curing of six antibiotic-resistant pathogenic bacteria (P. aeruginosa, E. coli, S. aureus, K. pneumonia, A. baumannii, B. cereus) was evaluated. The results of this study showed that nanoparticles had a spherical shape and smooth topology. The mean size were 172 ± 4 nm and Zeta potentials was +28.6 mv. The results of antibacterial activity confirmed that nanoemulsion of essential oil had higher inhibition against bacteria compared to free essential oil. Also, this nanoemulsion had antibiofilm activity. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration for Biofilm (MBCB) were determined for nanoemulsion against the biofilm of pathogenic bacteria. The results have shown that the MIC value for A. baumannii is 12.5 mg ml -1 and for E. coli this value is 1.75 mg ml -1. This finding means that MIC values were highest for A. baumannii and lowest for E. coli. Statistical analysis demonstrated that the inhibitory effect of nanoemulsion against bacterial biofilm was significant (P  less then  0.05). This nanoemulsion also had a remarkable effect the curing of R-plasmid of three antibiotic-resistant bacteria. https://www.selleckchem.com/products/wrw4.html According to GC-MS analysis of A. maurorum essential oil, the main compounds were oxygenated sesquiterpenes and hydrocarbons. Nanoemulsion of A. maurorum had the potential to use as suitable antimicrobial agents against antibiotic-resistant bacteria.Particulate matter (PM), a major component of air pollution, is an important carrier medium of various chemical and microbial compounds. Air pollution due to PM could increase the level of bacteria and associated adverse health effects. Staphylococci as important opportunistic pathogens that cause hospital- and community-acquired infections may transmit through air. This study aimed to obtain knowledge about the concentration of airborne bacteria as well as staphylococci associated with particulate matter with a diameter of less than 2.5 micrometers (PM2.5) in ambient air. The impact of meteorological factors including ultraviolet (UV) index, wind speed, temperature, and moisture on microbial concentrations was also investigated. Quartz filters were used to collect PM2.5 and associated bacteria in ambient air of a semiarid area. Airborne bacteria were quantified by culture method and Staphylococcus species identified by molecular methods. The mean (SD) concentration of PM2.5 and airborne bacteria was 64.83 (24.87) µg/m3 and 38 (36) colony forming unit (CFU)/m3, respectively. The results showed no significant correlation between the levels of PM2.5 and concentrations of bacteria (p  less then  0.05). Staphylococcus species were detected in 8 of 37 (22%) samples in a concentration from 3 to 213 CFU/m3. S. epidermidis was detected with the highest frequency followed by S. gallinarum and S. hominis, but S. aureus and methicillin-resistant Staphylococcus aureus (MRSA) were not detected. No significant correlation between the concentrations of bacteria with meteorological parameters was observed (p  less then  0.05). Our finding showed that, although the study area is sometimes subject to air pollution from PM2.5, the concentration of PM2.5- associated bacteria is relatively low. According to the results, PM2.5 may not be a source of community-associated staphylococcal infections.Highly purified chitosan was generally preferred for heavy metal (HM) removal and the preparation parameters varied largely without any agreement. This study investigated to the influences of chitin with different purities on the HM removal of corresponding chitosan. Sea shrimp waste was used as raw materials and Pb2+ was used as target HM. The results of orthogonal experimental analysis showed that only acid concentration played an important role in the deproteinization and demineralization processes of the chitin preparation under HCl, H2SO4 and CH3COOH treatment. Ca-bearing minerals (CBM) but not free -NH2 group of chitosan played a major role in the removal of Pb2+ from solution. Partly purified chitosan mainly removed Pb2+ by precipitation and then biosorption. The dissociation of Ca2+ from CBM elevated pH value of Pb2+ solution which benefited to precipitation and the formation of NH2-Pb2+. Partly purified chitosan prepared from HCl and CH3COOH treated chitin showed 720-753 mg/g of Pb2+ adsorption at the initial pH value of 6.0; however, highly purified chitosan prepared from HCl treated chitin showed only 45-160 mg/g. Chitosan prepared from H2SO4 treated chitin showed 720-752 mg/g of Pb2+ adsorption. This research found the unexplored information for the industrial application of chitosan with minimum cost but the highest HM removal efficiency. Effluents produced in the textile industries are important sources of water pollution due to the presence of toxic dyes, auxiliary chemicals, organic substances etc. Recycling of such industrial wastewater is one major aspect of sustainable water management; hence present study is focused on an eco-friendly process development for reclamation of higher loading textile wastewater. Industrial effluent samples with varying loading were collected from textile processing units located in and around Kolkata city. Vegetable waste collected from local market was utilized to prepare an efficient biochar for elimination of the recalcitrant dyes. Prior to adsorption, ceramic ultrafiltration (UF) process was used for reduction of the organic loading and other suspended and dissolved components. A remarkably high BET surface area of 1216 m g and enhanced pore volume of 1.139 cm g was observed for biochar. The maximum adsorption capacity obtained from the Langmuir isotherm was about 300mg.g . The combined process facilitated >99% removal of dyes and 77-80% removal of chemical oxygen demand (COD) from the various samples of effluent.