https://www.selleckchem.com/products/A014418.html In this paper we present a successful approach for the generation of partially fluorinated graphene structures. A computationally simple model optimized on a large density functional theory dataset quickly and precisely predicts experimentally observed structures. From the analysis of the structural diversity of fluorinated graphene in a wide range of synthesis temperatures, the general structural patterns are identified and the conditions for their achievement are determined. In addition, to facilitate further studies of fluorinated graphene, we present a ready-to-use GenCF code that implements the described structure generator.Covering up to August 2020The dramatic increase in the identification of dimeric natural products generated by microorganisms and plants has played a significant role in drug discovery. The biosynthetic pathways of these products feature inherent dimerization reactions, which are valuable for biosynthetic applications and chemical transformations. The extraordinary mechanisms of the dimerization of secondary metabolites should advance our understanding of the uncommon chemical rules for natural product biosynthesis, which will, in turn, accelerate the discovery of dimeric reactions and molecules in nature and provide promising strategies for the total synthesis of natural products through dimerization. This review focuses on the enzymes involved in the dimerization in the biosynthetic pathway of microbial natural products, with an emphasis on cytochrome P450s, laccases, and intermolecular [4 + 2] cyclases, along with other atypical enzymes. The identification, characterization, and catalytic landscapes of these enzymes are also introduced.Low-density lipoproteins (LDLs) are an endogenous nanocarrier to transport lipids in vivo. Owing to their biocompatibility and biodegradability, reduced immunogenicity, and natural tumor-targeting capability, we, for the first time, report the reconstitution