Drought is a major factor limiting crop productivity and quality. Sucrose non-fermenting-1 (SNF1)-related protein kinase 2s (SnRK2s) play critical roles in plant abiotic stress responses, especially in drought stress. However, knowledge regarding the functional roles of SnRK2s in drought stress and their underlying mechanisms is relatively limited in tea plant. In this study, CsSnRK2.5, a PEG 6000- and ABA-induced SnRK2 gene from tea plant, was overexpressed in Arabidopsis to investigate its potential function in drought stress response. The results showed that overexpression of CsSnRK2.5 resulted in enhanced drought tolerance, as indicated by an amelioration of the changes in various physiological indexes, including a decreased rate of water loss and decreased accumulation of ROS and MDA. In addition, CsSnRK2.5 overexpression conferred hypersensitivity to exogenous ABA, and transgenic plants exhibited improved ABA-mediated stomatal closure compared to WT plants. Moreover, the expression of some stress response genes, including AtRAB18 and AtRD29b, was more strongly induced in transgenic plants than in the WT when subjected to ABA and drought treatments. Taken together, our results indicate that CsSnRK2.5 is a positive regulator of ABA-regulated drought stress responses. BACKGROUND AND OBJECTIVES High levels of psychological control (PC), the (intentional or unintentional) attempt by parents to control their child's emotional experience, have been associated with increased risk for anxiety in youth. However, little is known regarding the association between PC and anxiety in emerging adulthood, a developmental period marked by various life transitions and high risk for the onset of internalizing symptoms, or about the relation between current parental PC and emotional regulatory processes during this stage. The current study examined whether perceived maternal PC was significantly associated with anxiety symptoms and both objective (psychophysiological; respiratory sinus arrhythmia) and subjective (self-reported) emotion regulatory processes. METHODS Participants (N = 125; ages 18 to 25) completed self-reports on their anxiety symptoms, emotion regulation abilities, and perceptions of their mother' behavior, and participated in a laboratory stressor, the Trier-Social Stress Test, while psychophysiological data were acquired. RESULTS Emerging adults who reported higher maternal PC also reported higher anxiety symptoms and evidenced greater emotion regulation difficulties on both objective and subjective indices than those who reported lower maternal PC. Moreover, the association between PC and anxiety levels was statistically mediated by self-reported emotion regulation difficulties. LIMITATIONS Results of this study should be interpreted in light of its limitations, which include it being cross-sectional in nature with a primarily female sample. Further, perceptions of maternal, but not paternal, parenting were examined. CONCLUSIONS Findings might have implications for targeting both psychological control and emotion regulation difficulties in personalized anxiety interventions during this high-risk developmental period. A significant hurdle in obtaining biophysical information on membrane proteins is developing a successful strategy for their reconstitution into a suitable membrane mimic. In particular, utilization of the more 'native-like' membrane mimics such as bicelles is generally more challenging than simple micellar solubilization. Caveolin-1, an integral membrane protein involved in membrane curvature, endocytosis, mechano-protection, and signal transduction, has been shown to be particularly recalcitrant to standard reconstitution protocols due to its highly hydrophobic characteristics. Herein we describe a robust method to incorporate recombinantly produced full-length caveolin-1 into bicelles at levels needed for biophysical experimentation. The benchmark of successful reconstitution is the obtainment of protein in a homogeneous state; therefore, we developed a validation procedure to monitor the success of the reconstitution using analytical ultracentrifugation of density-matched bicelles. Our findings indicated that our protocol produces a very homogeneous preparation of caveolin-1 associated with bicelles, and that caveolin-1 is highly α-helical (by circular dichroism spectroscopy). We believe that this methodology will serve as a general strategy to facilitate biophysical studies on membrane proteins. BACKGROUND AND AIMS UVB radiation can rapidly induce gene regulation leading to cumulative changes for plant physiology and morphology. https://www.selleckchem.com/products/BIBF1120.html We hypothesized that a transgenerational effect of chronic exposure to solar short UV modulates the offspring's responses to UVB and blue light, and that the transgenerational effect is genotype dependent. METHODS We established a factorial experiment combining two Vicia faba L. accessions, two parental UV treatments (full sunlight and exclusion of short UV, 290-350 nm), and four offspring light treatments from the factorial combination of UVB and blue light. The accessions were Aurora from southern Sweden, and ILB938 from Andean region of Colombia and Ecuador. KEY RESULTS The transgenerational effect influenced morphological responses to blue light differently in the two accessions. In Aurora, when UVB was absent, blue light increased shoot dry mass only in plants whose parents were protected from short UV. In ILB938, blue light increased leaf area and shoot dry mass more in plants whose parents were exposed to short UV than those that were not. Moreover, when the offspring was exposed to UVB, the transgenerational effect decreased in ILB938 and disappeared in Aurora. For flavonoids, the transgenerational effect was detected only in Aurora parental exposure to short UV was associated with a greater induction of total quercetin in response to UVB. Transcript abundance was higher in Aurora than in ILB938 for both CHALCONE SYNTHASE (99-fold) and DON-GLUCOSYLTRANSFERASE 1 (19-fold). CONCLUSIONS The results supported both hypotheses. Solar short UV had transgenerational effects on progeny responses to blue and UVB radiation, and they differed between the accessions. These transgenerational effects could be adaptive by acclimation of slow and cumulative morphological change, and by early build-up of UV protection through flavonoid accumulation on UVB exposure. The differences between the two accessions aligned with their adaptation to contrasting UV environments.