Hydroxyapatite (HA) is a representative substance that induces bone regeneration. Our research team extracted nanohydroxyapatite (EH) from natural resources, especially equine bones, and developed it as a molecular biological tool. Polyethylenimine (PEI) was used to coat the EH to develop a gene carrier. To verify that PEI is well coated in the EH, we first observed the morphology and dispersity of PEI-coated EH (pEH) by electron microscopy. The pEH particles were well distributed, while only the EH particles were not distributed and aggregated. Then, the existence of nitrogen elements of PEI on the surface of the pEH was confirmed by EDS, calcium concentration measurement and fourier transform infrared spectroscopy (FT-IR). Additionally, the pEH was confirmed to have a more positive charge than the 25 kD PEI by comparing the zeta potentials. As a result of pGL3 transfection, pEH was better able to transport genes to cells than 25 kD PEI. After verification as a gene carrier for pEH, we induced osteogenic differentiation of DPSCs by loading the BMP-2 gene in pEH (BMP-2/pEH) and delivering it to the cells. As a result, it was confirmed that osteogenic differentiation was promoted by showing that the expression of osteopontin (OPN), osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2) was significantly increased in the group treated with BMP-2/pEH. In conclusion, we have not only developed a novel nonviral gene carrier that is better performing and less toxic than 25 kD PEI by modifying natural HA (the agricultural byproduct) but also proved that bone differentiation can be effectively promoted by delivering BMP-2 with pEH to stem cells.Titanium (Ti) has been the most widely used orthopedic implant in the past decades. However, their inert surface often leads to insufficient osteointegration of Ti implant. To solve this issue, two bioactive Mg(OH)2 films were developed on Ti surfaces using hydrothermal treatment (Ti-M1# and Ti-M2#). The Mg(OH)2 films showed nano-flake structures sheets on Ti-M1# with a thickness of 14.7 ± 0.7 nm and a length of 131.5 ± 2.9 nm, and on Ti-M2# with a thickness of 13.4 ± 2.2 nm and a length of 56.9 ± 5.6 nm. Both films worked as Mg ions releasing platforms. With the gradual degradation of Mg(OH)2 films, weakly alkaline microenvironments will be established surrounding the modified implants. Benefiting from the sustained release of Mg ions, nanostructures, and weakly alkaline microenvironments, the as-prepared nano-Mg(OH)2 coated Ti showed better in vitro and in vivo osteogenesis. Notably, Ti-M2# showed better osteogenesis than Ti-M1#, which can be ascribed to its smaller nanostructure. Moreover, whole genome expression analysis was applied to study the osteogenic mechanism of nano-Mg(OH)2 films. For both coated samples, most of the genes related to ECM-receptor interaction, focal adhesion, and TGF-β pathways were upregulated, indicating that these signaling pathways were activated, leading to better osteogenesis. Furthermore, cells cultured on Ti-M2# showed markedly upregulated BMP-4 gene expression, suggesting that the nanostructure with Mg ion release ability can better activate BMP-4 related signaling pathways, resulting in better osteogenesis. Nano-Mg(OH)2 films demonstrated a superior osteogenesis and are promising surface modification strategy for orthopedic applications.Articular cartilage defect repair is a problem that has long plagued clinicians. Although mesenchymal stem cells (MSCs) have the potential to regenerate articular cartilage, they also have many limitations. Recent studies have found that MSC-derived exosomes (MSC-Exos) play an important role in tissue regeneration. The purpose of this study was to verify whether MSC-Exos can enhance the reparative effect of the acellular cartilage extracellular matrix (ACECM) scaffold and to explore the underlying mechanism. The results of in vitro experiments show that human umbilical cord Wharton's jelly MSC-Exos (hWJMSC-Exos) can promote the migration and proliferation of bone marrow-derived MSCs (BMSCs) and the proliferation of chondrocytes. We also found that hWJMSC-Exos can promote the polarization of macrophages toward the M2 phenotype. The results of a rabbit knee osteochondral defect repair model confirmed that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration. We demonstrated that hWJMSC-Exos can regulate the microenvironment of the articular cavity using a rat knee joint osteochondral defect model. https://www.selleckchem.com/products/Furosemide(Lasix).html This effect was mainly manifested in promoting the polarization of macrophages toward the M2 phenotype and inhibiting the inflammatory response, which may be a promoting factor for osteochondral regeneration. In addition, microRNA (miRNA) sequencing confirmed that hWJMSC-Exos contain many miRNAs that can promote the regeneration of hyaline cartilage. We further clarified the role of hWJMSC-Exos in osteochondral regeneration through target gene prediction and pathway enrichment analysis. In summary, this study confirms that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration.In recent years, metal peroxide (MO2) such as CaO2 has received more and more attention in cancer treatment. MO2 is readily decompose to release metal ions and hydrogen peroxide in the acidic tumor microenvironment (TME), resulting metal ions overloading, decreased acidity and elevated oxidative stress in TME. All of these changes making MO2 an excellent tumor therapeutic agent. Moreover, by combining MO2 with photosensitizers, enzymes or Fenton reagents, MO2 can assist and promote various tumor therapies such as photodynamic therapy and chemodynamic therapy. In this review, the synthesis and modification methods of MO2 are introduced, and the representative studies of MO2-based tumor monotherapy and combination therapy are discussed in detail. Finally, the current challenges and prospects of MO2 in the field of tumor therapy are emphasized to promote the development of MO2-based cancer treatment.PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pHe)-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pHe-responsive PEG-pHe-PLG and MMP-sensitive PEG-MMP-PLG. The corresponding smart nanoformulations PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG-pHe-PLG-Pt and PEG-MMP-PLG-Pt were about 4.