https://www.selleckchem.com/products/pri-724.html 1 per cent (369 of 1935) of general editorial board positions. The findings demonstrate gender disparity within editorial boards of the most prominent general surgery journals. The findings demonstrate gender disparity within editorial boards of the most prominent general surgery journals. Identifying the proteins that interact with drugs can reduce the cost and time of drug development. Existing computerized methods focus on integrating drug-related and protein-related data from multiple sources to predict candidate drug-target interactions (DTIs). However, multi-scale neighboring node sequences and various kinds of drug and protein similarities are neither fully explored nor considered in decision making. We propose a drug-target interaction prediction method, DTIP, to encode and integrate multi-scale neighbouring topologies, multiple kinds of similarities, associations, interactions related to drugs and proteins. We firstly construct a three-layer heterogeneous network to represent interactions and associations across drug, protein, and disease nodes. Then a learning framework based on fully-connected autoencoder is proposed to learn the nodes' low-dimensional feature representations within the heterogeneous network. Secondly, multi-scale neighbouring sequences of drug and protein nodes Comparison with other state-of-the-art methods and case studies of five drugs further validated DTIP's ability in discovering the potential candidate drug-related proteins.Venn diagrams are widely used tools for graphical depiction of the unions, intersections and distinctions among multiple datasets, and a large number of programs have been developed to generate Venn diagrams for applications in various research areas. However, a comprehensive review comparing these tools has not been previously performed. In this review, we collect Venn diagram generators (i.e. tools for visualizing the relationships of input lists within a Venn