The emergence and dissemination of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli is a global health issue. Food-producing animals, including pigs, are significant reservoirs of antimicrobial resistance (AMR), which can be transmitted to humans. Thus, the rapid detection of ESBLs is required for efficient epidemiological control and treatment. In this study, multiplex recombinase polymerase amplification (RPA) combined with a single-stranded tag hybridization chromatographic printed-array strip (STH-PAS), as a lateral flow strip assay (LFA), was established for the rapid and simultaneous detection of multiple bla genes in a single reaction. Visible blue lines, indicating the presence of the blaCTX-M, blaSHV, and blaOXA genes, were observed within 10 min by the naked eye. The limit of detection of all three genes was 2.5 ng/25 μL, and no cross-reactivity with seven commensal aerobic bacteria was observed. A total of 93.9% (92/98) and 96% (48/50) of the E. coli isolates from pork meat and fecal samples, respectively, expressed an ESBL-producing phenotype. Nucleotide sequencing of the PCR amplicons showed that blaCTX-M was the most prevalent type (91.3-95.83%), of which the main form was blaCTX-M-55. The sensitivity and specificity of the RPA-LFA were 99.2% and 100%, respectively, and were in almost perfect agreement (κ = 0.949-1.000) with the results from PCR sequencing. Thus, the RPA-LFA is a promising tool for rapid and equipment-free ESBL detection and may facilitate clinical diagnosis in human and veterinary medicine, as well as AMR monitoring and surveillance.The small (18S) and large (28S) nuclear ribosomal DNA (rDNA) introns have been researched and sequenced in a variety of ectomycorrhizal fungal taxa in this study, it is found that both 18S and 28S rDNA would contain introns and display some degree variation in size, nucleotide sequences and insertion positions within the same fungi species (Meliniomyces). https://www.selleckchem.com/products/740-y-p-pdgfr-740y-p.html Under investigations among the tested isolates, 18S rDNA has four sites for intron insertions, 28S rDNA has two sites for intron insertions. Both 18S and 28S rDNA introns among the tested isolates belong to group I introns with a set of secondary structure elements designated P1-P10 helics and loops. We found a 12 nt nucleotide sequences TACCACAGGGAT at site 2 in the 3'-end of 28S rDNA, site 2 introns just insert the upstream or the downstream of the12 nt nucleotide sequences. Afters sequence analysis of all 18S and 28S rDNA introns from tested isolates, three high conserved regions around 30 nt nucleotides (conserved 1, conserved 2, conserved 3) and identical nucleotides can be found. Conserved 1, conserved 2 and conserved 3 regions have high GC content, GC percentage is almost more than 60%. From our results, it seems that the more convenient host sites, intron sequences and secondary structures, or isolates for 18S and 28S rDNA intron insertion and deletion, the more popular they are. No matter 18S rDNA introns or 18S rDNA introns among tested isolates, complementary base pairing at the splicing sites in P1-IGS-P10 tertiary helix around 5'-end introns and exons were weak.Forest stand reflectance at the canopy level results from various factors, such as vegetation chemical properties, leaf morphology, canopy structure, and tree sizes. These factors are dependent on the species, age, and health statuses of trees, as well as the site conditions. Sentinel-2 imagery with the high spatial, spectral, and temporal resolution, has enabled analysis of the relationships between vegetation properties and their spectral responses at large spatial scales. A comprehensive study of these relationships is needed to understand the drivers of vegetation spectral patterns and is essential from the point of view of remote sensing data interpretation. Our study aimed to quantify the site and forest parameters affecting forest stands reflectance. The analysis was conducted for common beech-, silver fir- and Scots pine-dominated stands in a mountainous area of the Polish Carpathians. The effect of stands and site properties on reflectance in different parts of the growing season was captured using the dense time series provided by Sentinel-2 from 2018-2019. The results indicate that the reflectance of common beech stands is mainly influenced by elevation, particularly during spring and autumn. Other factors influencing beech stand reflectance include the share of the broadleaved understory, aspect, and, during summer, the age of stands. The reflectance of coniferous species, i.e., Scots pine and silver fir, is mainly influenced by the age and stand properties, namely the crown closure and stand density. The age is a primary driver for silver fir stands reflectance changes, while the stand properties have a large impact on Scots pine stands reflectance. Also, the understory influences Scots pine stands reflectance, while there appears to be no impact on silver fir stands. The influence of the abovementioned factors is highly diverse, depending on the used band and time of the season. Serious bacterial neonatal infections are a major cause of global neonatal mortality. While hospitalized treatment is recommended, families cannot access inpatient treatment in low resource settings. Two parallel randomized control trials were conducted at five sites in three countries (Democratic Republic of Congo, Kenya, and Nigeria) to compare the effectiveness of treatment with experimental regimens requiring fewer injections with a reference regimen A (injection gentamicin plus injection procaine penicillin both once daily for 7 days) on the outpatient basis provided to young infants (0-59 days) with signs of possible serious bacterial infection (PSBI) when the referral was not feasible. Costs were estimated to quantify the financial implications of scaleup, and cost-effectiveness of these regimens. Direct economic costs (including personnel, drugs and consumable costs) were estimated for identification, prenatal and postnatal visits, assessment, classification, treatment and follow-up. Data on time ian New Zealand Clinical Trials Registry under ID ACTRN 12610000286044. The trial was registered with Australian New Zealand Clinical Trials Registry under ID ACTRN 12610000286044.