https://www.selleckchem.com/products/PF-2341066.html Height and age did not affect kCrit; whereas, being heavier (p less then 0.001) and female (p = 0.042) significantly increased kCrit. Reliability was also affected by anthropometric and demographic factors, highlighting the potential problem of inflated reliability estimates from non-control related attributes. kCrit measurements appear reliable even after removing anthropometric and demographic influences, with adjusted correlations of 0.612 (95%CI 0.433-0.766) versus unadjusted correlations of 0.880 (95%CI 0.797-0.932). Besides assessment, trainers and therapists prescribing exercise could use the seated balance task and kCrit to precisely set difficulty level to a percentage of the subject's stability threshold to optimize improvements in trunk neuromuscular control and spine health.Excessive loads on the human spine is recognized as a risk factor for back injuries/pain. Various lifting analysis tools such as musculoskeletal models, regression equations and NIOSH (National Institute for Occupational Safety and Health) lifting equation (NLE) have been proposed to evaluate and mitigate associated risks during manual material handling activities. Present study aims to compare predicted spinal loads from 5 different lifting analysis tools as well as to critically evaluate the NIOSH recommended weight limit (RWL). Spinal loads were estimated under different symmetric/asymmetric lifting tasks in which hand-load mass at each task was set based on RWL from NLE. Estimated intradiscal pressures (IDPs) of various tools were also compared with in vivo measurements. We compared RWL by NLE versus our estimations of RWL calculated from our regression equations using biomechanical criteria (compression 1000 N. Although RWLs estimated by NLE was body weight independent, body weight substantially altered RWLs estimated from our regression equations. For improved estimation of the risk of injury, more accurate failure criteria fo