https://www.selleckchem.com/products/resatorvid.html They can attenuate symptoms via RNA silencing and enhancement of host defense, but some can be lethal as RNA silencing suppressor antagonists. Moreover, selected viruses produce lncRNAs by incomplete degradation of genomic RNAs. They do not replicate but may impact viral infection, gene regulation, and cellular functions. Finally, the host plant lncRNAs can also contribute during plant-virus interactions, inducing plant defense and the regulation of gene expression, often in conjunction with micro and/or circRNAs.With the development of nanotechnology, gold nanoparticles (Au NPs) have attracted enormous attention due to their special properties. The green synthesis of Au NPs from lignin would inspire the utilization of lignin and its related functional materials. In this study, a rapid preparation process of Au NPs was investigated by utilizing lignin nanoparticles (LNPs) under room temperature without chemical addition. The LNPs acted as a reducing agent, stabilizing agent, and template for the preparation of LNPs@AuNPs. The obtained LNPs@AuNPs were characterized by UV-Vis spectrum, Transmission Electron Microscope (TEM), and X-ray photoelectron spectroscopy (XPS). The possible mechanism was illustrated by Fourier Transform Infrared Spectroscopy (FT-IR), 31P, XPS, and UV analyses. The abundant hydroxyl groups (24.96 mmol/g) favored the preparation of Au NPs. Au NPs diameters of 10-30 nm were well dispersed in the LNPs. The optimal reaction conditions were a ratio of 10 mg of LNPs to 0.05 mmol HAuCl4, room temperature, and a reaction time of 30 min. The LNPs@AuNPs exhibited excellent stability in the suspension for more than seven days. The reduction process could be related to the disruption of side chains of lignin, hydroxyl group oxidation, and hydroquinones and quinones from the comproportionation reaction. The LNPs@AuNPs would open a door for the design of Au NP/lignin-derived novel functional materials.Mycot