https://www.selleckchem.com/products/ly3200882.html Effectively controlling vector mosquito populations while avoiding the development of resistance remains a prevalent and increasing obstacle to integrated vector management. Although, metallic nanoparticles have previously shown promise in controlling larval populations via mechanisms which are less likely to spur resistance, the impacts of such particles on life history traits and fecundity of mosquitoes are understudied. Herein, we investigate the chemically well-defined cerium oxide nanoparticles (CNPs) and silver-doped nanoceria (AgCNPs) for larvicidal potential and effects on life history traits and fecundity of Aedes (Ae.) aegypti mosquitoes. When 3rd instar larvae were exposed to nanoceria in absence of larval food, the mortality count disclosed significant activity of AgCNPs over CNPs (57.8±3.68% and 17.2±2.81% lethality, respectively) and a comparable activity to Ag+ controls (62.8±3.60% lethality). The surviving larvae showed altered life history traits (e.g., reduced egg hatch proportion and variedof nanoceria on life history traits and interference with mosquito egg development.Knowledge of community resilience aids the development of strategies to mitigate the impacts of a disturbance. An extreme low-seawater temperature event in late January and February 2008 resulted in high fish mortality in the coastal waters of the Penghu Islands, Taiwan. In this study, we used underwater diving visual censuses to analyze fish communities at eight sampling stations along the coast of the Penghu Islands for seven years after the 2008 event. We evaluated community metrics, including species richness, abundance-weighted diversity, average thermal affinity, and average trophic level, and described the temporal variation in select dominant species abundances. Species richness and diversity of the communities required 53 months to reach a steady-state at the sampling stations following the cold water intrusion. The cold