https://www.selleckchem.com/products/adavivint.html Cellular immune responses, through both T and B cells, are critical to understanding the role and regulation of lymphocytes following viral infection, as well as defining responses to vaccination. T cells play a critical role in adaptive immunity, including pathogen elimination through the engagement of CD4 and CD8 receptors, which trigger signaling mechanisms. B cells contribute to generating antibodies following exposure to foreign pathogens through interactions with CD4+ lymphocytes. While these different cell types have distinctly different modes of action in terms of contributions to protection (cytotoxic versus antibody mediated), they account for the majority of adaptive immunity induced following infection or vaccination. While the ability to measure cell-mediated immunity (CMI) has steadily improved, there is much to learn with regard to their contribution to the protection of birds against diseases induced by avian influenza virus. The rapidly increasing knowledge of genomic avian sequences, along with the increasing availability of monoclonal antibodies detecting avian cell-associated antigen markers, has made techniques to measure CMI more specific and informative for researchers.Avian influenza (AI) vaccines for poultry are based on hemagglutinin (HA) proteins, and protection is specific to the subtype. An estimated 313 billion doses have been used between 2002 and 2018 for high pathogenicity AI control. No universal vaccines are currently available. The majority of AI vaccines are inactivated whole influenza viruses that are grown in embryonating chicken eggs, emulsified in oil adjuvant systems, and injected subcutaneously or intramuscularly. Live virus-vectored vaccines such as recombinant viruses of fowl pox, Newcastle disease, and herpesvirus of turkeys containing inserts of AI virus HA genes have been used on a more limited basis. Also, vaccines have been licensed or registered based on baculoviru