We present numerical results for the tagged-particle dynamics by solving the mode-coupling theory in confined geometry for colloidal liquids (cMCT). We show that neither the microscopic dynamics nor the type of intermediate scattering function qualitatively changes the asymptotic dynamics in vicinity of the glass transition. In particular, we find similar characteristics of confinement in the low-frequency susceptibility spectrum which we interpret as footprints of parallel relaxation. We derive predictions for the localization length and the scaling of the diffusion coefficient in the supercooled regime and discover a pronounced nonmonotonic dependence on the confinement length. For dilute liquids in the hydrodynamic limit we calculate an analytical expression for the intermediate scattering functions, which is in perfect agreement with event-driven Brownian dynamics simulations. From this, we derive an expression for persistent anticorrelations in the velocity autocorrelation function (VACF) for confined motion. Using numerical results of the cMCT equations for the VACF we also identify a crossover between different scalings corresponding to a transition from unconfined to confined behavior.In a system of colloidal inclusions suspended in an equilibrium bath of smaller particles, the particulate bath engenders effective, short-ranged, primarily attractive interactions between the inclusions, known as depletion interactions, that originate from the steric depletion of bath particles from the immediate vicinity of the inclusions. In a bath of active (self-propelled) particles, the nature of such bath-mediated interactions can qualitatively change from attraction to repulsion, and they become stronger in magnitude and range of action as compared with typical equilibrium depletion interactions, especially as the bath activity (particle self-propulsion) is increased. We study effective interactions mediated by a bath of active Brownian particles between two fixed, impenetrable, and disk-shaped inclusions in a planar (channel) confinement in two dimensions. Confinement is found to strongly influence the effective interaction between the inclusions, specifically by producing alternating interaction profiles with possible attractive and repulsive regions in sufficiently narrow channels. We study the dependence of the ensuing interactions on different system parameters and the orientational (parallel versus perpendicular) configuration of the inclusion pair relative to the channel walls. The confinement effects are largely regulated by the layering of active particles next to the surface boundaries, both of the inclusions and the channel walls that counteract one another in accumulating the active particles in their own proximities. In narrow channels, the combined effects due to the channel walls and the inclusions lead to peculiar structuring of active particles (reminiscent of wavelike interference patterns) within the channel.We study the effects of the intrinsic curvature (IC), intrinsic twist rate (ITR), anisotropic bending rigidities, sequence disorder, and temperature (T) on the persistence length (l_p) of a two- or three-dimensional semiflexible biopolymer. We develop some general expressions to evaluate exactly these effects. https://www.selleckchem.com/products/baxdrostat.html We find that a moderate IC alone reduces l_p considerably. Our results indicate that the centerline of the filament keeps as a helix in a rather large range of T when ITR is small. However, a large ITR can counterbalance the effect of IC and the result is insensitive to the twist rigidity. Moreover, a weak randomness in IC and ITR can result in an "overexpanded" state. Meanwhile, when ITR is small, l_p is not a monotonic function of T but can have either minimum or maximum at some T, and in the two-dimensional case the maximum is more obvious than that in the three-dimensional case. These results reveal that to obtain a proper size at a finite T for an intrinsically curved semiflexible biopolymer, proper values of bending rigidities and ITR are necessary but a large twist rigidity may be only a by-product. Our findings are instructive in controlling the size of a semiflexible biopolymer in organic synthesis since the mean end-to-end distance and radius of gyration of a long semiflexible biopolymer are proportional to l_p.Three-dimensional (3D) flow structures around a wall-mounted short cylinder of height-to-diameter ratio 1 were instantaneously measured by a high-resolution tomographic particle image velocimetry (Tomo-PIV) at Reynolds number of 10 720 in a water tunnel. 3D velocity fields, 3D vorticity, the Q criterion, the rear separation region, and the characteristic of arch type vortex and tip vortices were first discussed. We found a strong 3D W-type arch vortex behind the short cylinder, which was originated by the interaction between upwash and downwash flows. This W-type arch vortex was reshaped to the M-shaped arch vortex downstream. It indicated that the head shape of the arch vortex structure depended on the aspect ratio of the cylinder. The large-scale streamwise vortices were originated by the downwash and upwash flows near the center location of W-type arch vortex. Then the 3D orthogonal wavelet multiresolution technique was developed to analyze instantaneous 3D velocity fields of Tomo-PIV in order to clarify 3D multiscale wake flow structures. The W-type shape arch vortex was extracted in the time-averaged intermediate-scale structure, while an M-shaped arch vortex was identified in the time-averaged large-scale structure. The tip vortices distributed in the time-averaged large- and intermediate-scale structures. The instantaneous intermediate-scale upwash vortices played an essential role in producing W-type head of arch structure. It was also observed that strong small-scale vortices appeared in the shear layer or near the bottom plate and most of them were contained in the intermediate-scale structures.In this paper we analyze the entropy and entropy production of a nonisolated quantum system described within the quantum Brownian motion framework. This is a very general and paradigmatic framework for describing nonisolated quantum systems and can be used in any kind of coupling regime. We start by considering the application of von Neumann entropy to an arbitrarily damped quantum system making use of its reduced density operator. We argue that this application is formally valid and develop a path-integral method to evaluate that quantity analytically. We apply this technique to a harmonic oscillator in contact with a heat bath and obtain an exact form for its entropy. Then we study the entropy production of this system and enlighten important characteristics of its thermodynamical behavior on the pure quantum realm and also address their transition to the classical limit.