https://www.selleckchem.com/products/Paclitaxel(Taxol).html Overall antagonism was the dominant deviation pattern, particularly at low doses, though synergism was also detected at higher doses or specific ratios. Synergism at low doses was found for the binary mixture of ammonium hydroxide and acetaminophen, two common pollutants, which denotes an enhanced risk to aquatic ecosystems. Independent Action provided more accurate predictions for the quaternary mixture, whereas Concentration Addition overestimated the toxicity of the mixture. Regarding the environmental risk assessment of water bodies, the interaction between chemicals in a mixture should not be neglected. The complexity of the mixture interactions found in the present study highlights the importance of complementing chemical screenings of water bodies with mixture toxicity data, particularly when considering chemicals of multiple origins whose joint action remains unknown.A zeolitic cage was introduced and rationally fabricated by encapsulating Pt nanoparticles (NPs) in hollow ZSM-5, a nanomaterial with a cavity and porous shell, for efficient catalytic oxidation of benzene. The structure and formation of the zeolitic cage were systematically investigated and characterized using transmission electron microscopy, nitrogen sorption investigations, X-ray photoelectron spectroscopy, nuclear magnetic resonance spectroscopy, and X-ray diffraction. The obtained hollow 0.2 Pt@ZSM-5 exhibited a comparable low-temperature catalytic activity with 0.5Pt/ZSM-5 with T90 value of 178 °C. Various characterization techniques combined with adsorption experiments uncover the tremendous role of the zeolitic cage in the catalytic activity toward benzene oxidation. The porous shell prevented benzene dilution and the acidity originating from the hollow interior of ZSM-5 promoted the storage of benzene, thereby forming a high local concentration of benzene around Pt NPs, resulting in excellent catalytic performance. These findi