https://www.selleckchem.com/products/1-methyl-3-nitro-1-nitrosoguanidine.html performance. The findings demonstrated the benefits of using assessments that simultaneously evaluate multiple domains of neurologic function (eg, upper extremity and postural control) after SRC. Measurement of postural movements during the object-hit task revealed impairments in postural stability that were not related to impairments in upper extremity performance. The findings demonstrated the benefits of using assessments that simultaneously evaluate multiple domains of neurologic function (eg, upper extremity and postural control) after SRC.Inhalation and ingestion of 137Cs and other long-lived radionuclides can occur after large-scale accidental or malicious radioactive contamination incidents, resulting in a complex temporal pattern of radiation dose/dose rate, influenced by radionuclide pharmacokinetics and chemical properties. High-throughput radiation biodosimetry techniques for such internal exposure are needed to assess potential risks of short-term toxicity and delayed effects (e.g., carcinogenesis) for exposed individuals. Previously, we used γ-H2AX to reconstruct injected 137Cs activity in experimentally-exposed mice, and converted activity values into radiation doses based on time since injection and 137Cs elimination kinetics. In the current study, we sought to assess the feasibility and possible advantages of combining γ-H2AX with transcriptomics to improve 137Cs activity reconstructions. We selected five genes (Atf5, Hist2h2aa2, Olfr358, Psrc1, Hist2h2ac) with strong statistically-significant Spearman's correlations with injected activity and stable expression over time after 137Cs injection. The geometric mean of log-transformed signals of these five genes, combined with γ-H2AX fluorescence, are used as predictors in a nonlinear model for reconstructing injected 137Cs activity. The coefficient of determination (R2) comparing actual and reconstructed activities was 0.91 a