4% experienced obstetric complications. Trauma-informed and psychoeducational interventions were primarily used during counselling sessions. Our data underpin the glaring disparities in refugee maternal healthcare in Germany. Maternal care designed to meet the specific needs of pregnant refugees and mothers is essential. More targeted, evidence-based and cost-effective interventions are needed. Our psychosocial walk-in clinic is a first step towards ensuring primary care delivery for refugee women during the particularly vulnerable period of pregnancy and early motherhood.Osteoarthritis (OA) is a common joint disease that ultimately causes physical disability and imposes an economic burden on society. Cartilage destruction plays a key role in the development of OA. https://www.selleckchem.com/products/c188-9.html Vorinostat is an oral histone deacetylase (HDAC) inhibitor and has been used for the treatment of T-cell lymphoma. Previous studies have reported the anti-inflammatory effect of HDAC inhibitors in both in vivo and in vitro models. However, it is unknown whether vorinostat exerts a protective effect in OA. In this study, our results demonstrate that treatment with vorinostat prevents interleukin 1α (IL-1α)-induced reduction of type II collagen at both gene and protein levels. Treatment with vorinostat reduced the IL-1α-induced production of mitochondrial reactive oxygen species (ROS) in T/C-28a2 cells. Additionally, vorinostat rescued the IL-1α-induced decrease in the expression of the collagen type II a1 (Col2a1) gene and the expression of Sry-related HMG box 9 (SOX-9). Importantly, we found that vorinostat inhibited the expression of matrix metalloproteinase-13 (MMP-13), which is responsible for the degradation of type II collagen. Furthermore, vorinostat suppressed the expression of E74-like factor 3 (ELF3), which is a key transcription factor that plays a pivotal role in the IL-1α-induced reduction of type II collagen. Also, the overexpression of ELF3 abolished the protective effects of vorinostat against IL-1α-induced loss of type 2 collagen by inhibiting the expression of SOX-9 whilst increasing the expression of MMP-13. In conclusion, our findings suggest that vorinostat might prevent cartilage destruction by rescuing the reduction of type II collagen, mediated by the suppression of ELF3.In this research, we developed a method so-called Isolation Chip with Plate Streaking (ICPS) to selectively enrich nitrifying microbial consortium for treating municipal wastewater. In batch experiment, these bacterial communities were able to remove NH3 -N in 72 h with an efficiency of 96%. Firmicutes, Bacteroidetes, and Proteobacteria species are dominant bacteria in these communities. When the bacterial communities were used in the membrane bioreactor under typical condition, the removal efficiency was 81.0%. In contrast, under the actual wastewater condition, the efficiency could reach 91.2%. All above results showed clearly that the consortium selected by our ICPS method could achieve high-efficient NH3 -N removal, thus offering a reliable technique for screening functional microorganisms in the field of water treatment. PRACTITIONER POINTS ICPS technology was designed and used for screening specialized NH3 -N-removing isolates. The screening process benefited the growth of the dominant nitrifying bacteria Firmicutes and Bacteroidetes. When the functional bacteria applied into the MBR, the NH3 -N removal efficiency was 91.2% under actual wastewater conditions.Most species in the bacterial family of Pasteurellaceae colonize one specific host species. Vertebrates of very different evolutionary descent including fish, turtles, marsupials, eutherians and birds are colonized by different members of Pasteurellaceae. This one-to-one microbial-host species partnership makes Pasteurellaceae species valuable candidates to study biodiversity, bacterial-host co-evolution and host adaptation, and their widespread distribution across vertebrates provide the possibility to collect a wide array of data, where wildlife species are essential. However, obtaining samples from wild animals comes with logistic, technical and ethical challenges, and previous microbiota studies have led to the presumption that captive animals are poor models for microbial studies in wildlife. Here, we show that colonization of polar bears by Ursidibacter maritimus is unaffected by factors related to captivity, reflecting a deep symbiotic bond to the host. We argue that the study of ecological and evolutionary principles in captive wildlife is possible for host-adapted taxa such as those in the Pasteurellaceae family. Moreover, studying captive, often trained animals protects wild populations from the stress associated with obtaining samples.Despite the importance of understanding plant growth, the mechanisms underlying how plant and fruit growth declines during drought remain poorly understood. Specifically, it remains unresolved whether carbon or water factors are responsible for limiting growth as drought progresses. We examine questions regarding the relative importance of water and carbon to fruit growth depending on the water deficit level and the fruit growth stage by measuring fruit diameter, leaf photosynthesis, and a proxy of cell turgor in olive (Olea europaea). Flow cytometry was also applied to determine the fruit cell division stage. We found that photosynthesis and turgor were related to fruit growth; specifically, the relative importance of photosynthesis was higher during periods of more intense cell division, while turgor had higher relative importance in periods where cell division comes close to ceasing and fruit growth is dependent mainly on cell expansion. This pattern was found regardless of the water deficit level, although turgor and growth ceased at more similar values of leaf water potential than photosynthesis. Cell division occurred even when fruit growth seemed to stop under water deficit conditions, which likely helped fruits to grow disproportionately when trees were hydrated again, compensating for periods with low turgor. As a result, the final fruit size was not severely penalized. We conclude that carbon and water processes are able to explain fruit growth, with importance placed on the combination of cell division and expansion. However, the major limitation to growth is turgor, which adds evidence to the sink limitation hypothesis.