https://www.selleckchem.com/products/astx660.html Avoidance behavior is a key symptom of most anxiety disorders and a central readout in animal research. However, of real-life avoidance behavior in humans is typically restricted to clinical populations, who show actual avoidance of phobic objects. In experimental approaches for healthy participants, many avoidance tasks utilize button responses or a joystick navigation on the screen as indicators of avoidance behavior. To allow the ecologically valid assessment of avoidance behavior in healthy participants, we developed a new automated immersive Virtual Reality paradigm, where participants could freely navigate in virtual 3-dimensional, 360-degrees scenes by real naturalistic body movements. A differential fear conditioning procedure was followed by three newly developed behavioral tasks to assess participants' avoidance behavior of the conditioned stimuli an approach, a forced-choice, and a search task. They varied in instructions, degrees of freedom, and high or low task-related relevance of the stimuli. We initially examined the tasks in a quasi-experiment (N = 55), with four consecutive runs and various experimental adaptations. Here, although we observed avoidance behavior in all three tasks after additional reinforcement, we only detected fear-conditioned avoidance behavior in the behavioral forced-choice and search tasks. These findings were largely replicated in a confirmatory experiment (N = 72) with randomized group allocation, except that fear-conditioned avoidance behavior was only manifest in the behavioral search task. This supports the notion that the behavioral search task is sensitive to detect avoidance behavior after fear conditioning only, whereas the behavioral approach and forced-choice tasks are still able to detect "strong" avoidance behavior after fear conditioning and additional reinforcement.Purpose To explore the effects of physical activity (PA) intervention on executive function (EF) an