https://www.selleckchem.com/products/wz-811.html Phase-only beam shaping with liquid crystal on silicon spatial light modulators (SLM) allows modulating the wavefront dynamically and generating arbitrary intensity patterns with high efficiency. Since this method cannot take control of all degrees of freedom, a speckle pattern appears and drastically impairs the outcome. There are several methods to overcome this issue including algorithms which directly control phase and amplitude, but they suffer from low efficiency. Methods using two SLMs yield excellent results but they are usually limited in the applicable energy due to damage to the SLM's backplane. We present a method which makes use of two SLMs and simultaneously gives way for high-energy laser applications. The algorithm and setup are designed to keep the fluence on the SLMs low by distributing the light over a large area. This provides stability against misalignment and facilitates experimental feasibility while keeping high efficiency.A continuous field Monte Carlo radiative transfer model with an improved semianalytic approach is developed to study laser propagation in an inhomogeneous dust environment. In the proposed model, the photon step size can vary with the mass concentration of the dust environment. Additionally, the scattering properties of the dust particles are calculated with the T-matrix method and the T-matrix scattering phase function is applied to the Monte Carlo simulation with a rejection method. Using this model, the influences of the particle sizes and shapes on the backscattering properties are studied. Finally, the laser echoes simulated by our proposed model are compared with those of traditional Monte Carlo method and experimental results. Different mass concentration distributions indeed influence the simulated laser echo. The simulated results (of our proposed model) agree well with the measured data, demonstrating the effectiveness and accuracy of our approach for inhomogeneous