https://www.selleckchem.com/products/Pemetrexed-disodium.html Low-molecular-weight sodium alginate (LMWSA) has been reported to possess unique physicochemical properties and bioactivities. There is little information available about degradation of sodium alginate by ozonation. Effect of ozonation on molecular weight, molecular weight distribution, color change, M/G ratio, and chemical structure of sodium alginate was investigated. The molecular weight of sodium alginate decreased from 972.3 to 76.7 kDa in the 80-min period of ozonation at 25 °C. Two different degradation-rate constants were calculated. Molecular weight distribution of the LMWSA changed appreciably. Ozonation cannot lead to color change of LMWSA. The M/G ratio of LMWSA was not altered significantly, compared with that of the original alginate. The FT-IR and 13C NMR spectra indicated the chemical structure of LMWSA obtained by ozonation was not altered appreciably. New insight into the ozonation of alginate will be promisingly opened up. Ozonation of sodium alginate can be a alternative for production of LMWSA.The polysaccharide-based biomaterials hyaluronic acid (HA) and chondroitin sulfate (CS) have aroused great interest for use in drug delivery systems for tumor therapy, as they have outstanding biocompatibility and great targeting ability for cluster determinant 44 (CD44). In addition, modified HA and CS can self-assemble into micelles or micellar nanoparticles (NPs) for targeted drug delivery. This review discusses the formation of HA- and CS-based NPs, and various types of CS-based NPs including CS-drug conjugates, CS-polymer NPs, CS-small molecule NPs, polyelectrolyte nanocomplexes (PECs), CS-metal NPs, and nanogels. We then focus on the applications of HA- and CS-based NPs in tumor chemotherapy, gene therapy, photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), and immunotherapy. Finally, this review is expected to provide guidelines for the development of variou