https://www.selleckchem.com/products/mira-1.html DNA assembly has provided new opportunities for the development of a novel drug delivery system (DDS) for real-time monitoring and precision treatment of cancer lesions. Herein, we propose mRNA-responsive DNA nanospheres (DNA-NS), whose self-assembly can be triggered by products of rolling circle amplification and functional hairpins and deliver anticancer drug doxorubicin (DOX) for bioimaging and cancer therapy. It has been demonstrated that DNA-NS exhibited good stability in biological environments. Hence, DNA-NS can serve as a universal platform of detections of mRNA related to various tumor cells. DNA-NS can also be applied in the mRNA-dependent DDS. For drug-resistant cells, which are widely present in actual cancer models, DNA-NS can effectively overcome the efflux action of drug-resistant cells to improve the therapeutic efficacy of DOX. In summary, this study provides a potential strategy for constructing the endogenous mRNA-responsive DDS for cancer diagnosis and chemotherapy in vivo.Species differences in metabolism may produce failure prediction of drug efficacy/toxicity in humans. Integration of metabolic competence and cellular effect assays in vitro can provide insight into the species differences in metabolism; however, a co-culture platform with features of high throughput, operational simplicity, low sample consumption, and independent layouts is required for potential usage in industrial test settings. Herein, we developed an integrated array chip (IAC) to evaluate the species differences in metabolism through metabolism-induced anticancer bioactivity as a case. The IAC consisted of two functional parts a micropillar chip for immobilization of liver microsomes and a microwell chip for three-dimensional (3D) tumor cell culture. First, optimized parameters of the micropillar chip for microsomal encapsulation were obtained by cross-shaped protrusions and a 2.5 μL volume of 3D agarose spots. Next, we exa