https://www.selleckchem.com/products/cdk2-inhibitor-73.html Thermoelectric material tetrahedrite Cu12Sb4S13 has attracted much attention because of its intrinsic low lattice thermal conductivity, excellent electrical transport property, and environment-friendly constituents. However, its thermoelectric figure merit, ZT, is limited because of the low Seebeck coefficient (S) and power factor (PF). Hence, it is indispensable to enhance its S and PF to increase its ZT. Here, we show that when Sb deviation from its stoichiometric ratio in the Cu12Sb4S13 band structure is modulated, it gives rise to increased density of states and enhancement of the Seebeck coefficient. Moreover, carrier concentration is tuned by changing sulfur and copper vacancies through controlling the Cu3SbS4 phase with an atomic ratio of Sb, leading to increased electrical conductivity. In addition, as large as ∼60% reduction of lattice thermal conductivity is obtained by intensified phonon scattering using an impurity phase/element and vacancy-like defects induced by different Sb contents. As a result, a high ZT = 0.86 is achieved at 723 K for the Cu12Sb4+δS13 sample with δ = 0.2, which is ∼50% larger than that of stoichiometric Cu12Sb4S13 studied here, indicating that ZT of Cu12Sb4S13 can be improved through simple modulation of the Sb stoichiometric ratio.Ni-rich cathode materials LiNixCoyMn1-x-yO2 (x ≥ 0.6) have attracted much attention due to their high capacity and low cost. However, they usually suffer from rapid capacity decay and short cycle life due to their surface/interface instability, accompanied by the high Ni content. In this work, with the Ni0.9Co0.05Mn0.05(OH)2 precursor serving as a coating target, a Li-ion conductor Li2SiO3 layer was uniformly coated on Ni-rich cathode material LiNi0.9Co0.05Mn0.05O2 by a precoating and syn-lithiation method. The uniform Li2SiO3 coating layer not only improves the Li-ion diffusion kinetics of the electrode but also reduces mechanical microstrain a