Despite the variety of tools available for cancer diagnosis and classification, methods that enable fast and simple characterization of tumors are still in need. In recent years, mass spectrometry has become a method of choice for untargeted profiling of discriminatory compound as potential biomarkers of a disease. Biofluids are generally considered as preferable matrices given their accessibility and easier sample processing while direct tissue profiling provides more selective information about a given cancer. Preparation of tissues for the analysis via traditional methods is much more complex and time-consuming, and, therefore, not suitable for fast on-site analysis. The current work presents a protocol combining sample preparation and extraction of small molecules on-site, immediately after tumor resection. The sampling device, which is of the size of an acupuncture needle, can be inserted directly into the tissue and then transported to the nearby laboratory for instrumental analysis. The results of metabolomics and lipidomics analyses demonstrate the capability of the approach for the establishment of phenotypes of tumors related to the histological origin of the tumor, malignancy, and genetic mutations, as well as for the selection of discriminating compounds or potential biomarkers. The non-destructive nature of the technique permits subsequent performance of routinely used tests e.g., histological tests, on the same samples used for SPME analysis, thus enabling attainment of more comprehensive information to support personalized diagnostics.Described here is confocal reflection microscopy-assisted single-cell innate fluorescence analysis (CRIF), a minimally invasive method for reconstructing the innate cellular fluorescence signature from each individual live cell in a population distributed in a three-dimensional (3D) space. The innate fluorescence signature of a cell is a collection of fluorescence signals emitted by various biomolecules within the cell. Previous studies established that innate fluorescence signatures reflect various cellular properties and differences in physiological status and are a rich source of information for cell characterization and identification. Innate fluorescence signatures have been traditionally analyzed at the population level, necessitating a clonal culture, but not at the single-cell level. CRIF is particularly suitable for studies that require 3D resolution and/or selective extraction of fluorescence signals from individual cells. Because the fluorescence signature is an innate property of a cell, CRIF is also suitable for tag-free prediction of the type and/or physiological status of intact and single cells. This method may be a powerful tool for streamlined cell analysis, where the phenotype of each single cell in a heterogenous population can be directly assessed by its autofluorescence signature under a microscope without cell tagging.A straightforward, controllable means of using the non-parasitic planarian, Dugesia tigrina, a free-living aquatic flatworm, to study the stimulant and withdrawal properties of natural products is described. Experimental assays benefitting from unique aspects of planarian physiology have been applied to studies on wound healing, regeneration, and tumorigenesis. In addition, because planarians exhibit sensitivity to a variety of environmental stimuli and are capable of learning and developing conditioned responses, they can be used in behavioral studies examining learning and memory. Planarians possess a basic bilateral symmetry and a central nervous system that uses neurotransmitter systems amenable to studies examining the effects of neuromuscular biomodulators. Consequently, experimental systems monitoring planarian movement and motility have been developed to examine substance addiction and withdrawal. Because planarian motility offers the potential for a sensitive, easily standardized motility assay system to monitor the effect of stimuli, the planarian locomotor velocity (pLmV) test was adapted to monitor both stimulation and withdrawal behaviors by planarians through the determination of the number of grid lines crossed by the animals with time. Here, the technique and its application are demonstrated and explained.Measuring the surface temperature of objects that are processed in conveyor belt furnaces is an important tool in process control and quality assurance. Currently, the surface temperature of objects processed in conveyor belt furnaces is typically measured via thermocouples. However, infrared (IR) thermography presents multiple advantages compared to thermocouple measurements, as it is a contactless, real-time, and spatially resolved method. https://www.selleckchem.com/products/Nolvadex.html Here, as a representative proof-of-concept example, an inline thermography system is successfully installed into an IR lamp powered solar firing furnace, which is used for the contact firing process of industrial Si solar cells. This protocol describes how to install an IR camera into a conveyor belt furnace, conduct a customer correction of a factory calibrated IR camera, and perform the evaluation of spatial surface temperature distribution on a target object.Vascular development is determined by the sequential expression of specific genes, which can be studied by performing in situ hybridization assays in zebrafish during different developmental stages. To investigate the role of endoglin(eng) in vessel formation during the development of hereditary hemorrhagic telangiectasia (HHT), morpholino-mediated targeted knockdown of eng in zebrafish are used to study its temporal expression and associated functions. Here, whole-mount in situ RNA hybridization (WISH) is employed for the analysis of eng and its downstream genes in zebrafish embryos. Also, tube formation assays are performed in HHT patient-derived induced pluripotent stem cell-differentiated endothelial cells (iPSC-ECs; with eng mutations). A specific signal amplifying system using the whole amount In Situ Hybridization - WISH provides higher resolution and lower background results compared to traditional methods. To obtain a better signal, the post-fixation time is adjusted to 30 min after probe hybridization.