https://www.selleckchem.com/products/way-100635.html Comparing the estimated abundance between these two scenarios, we show that forest restoration can reduce the abundance of O. nigripes up to 89.29% in 43.43% of Atlantic forest territory. For N. lasiurus, abundance decreased up to 46% in 44% of the Atlantic forest. To our knowledge, this is the first study linking forest restoration and zoonotic diseases. Our results indicate that forest restoration would decrease the chance of HCPS transmission in ~45% of the Atlantic forest, making the landscape healthier to ~2,8 million people living within this area. This positive effect of restoration on disease regulation should be considered as an additional argument to encourage and promote forest restoration in tropical areas around the world.The current study presents the first nitrogen (N) and phosphorus (P) footprints calculator for Sub-Saharan Africa during 1961-2017 using an adjusted N-Calculator model, by calculating two sets of virtual N factors (VNFs) or virtual P factors (VPFs) one for fertilized farms and one for unfertilized farms. We furthermore calculated the future food footprints of N (NF) and P (PF) under five scenarios include 1) business as usual [BAU], 2) achieve an equitable diet (EqD) while the plant N and P uptake and all other food losses would be constant at 2017 level [S1], 3) follow the EqD without any changes in plant N and P uptake, but the current ratio of other food losses would increase by 50% [S2], 4) follow the EqD with a 5% less in plant N and P uptake than the current ratio, and the current ratio of other food losses would increase by 50% [S3], and 5) follow the EqD with a 10% greater in plant N and P uptake than the current ratio, while the current ratio of other food losses would decrease by 50% [S4]. NF (kg N cap-1 yr-1) and PF (kg P cap-1 yr-1) increased from 6.7 and 1.1 to 8.3 and 1.5 during 1961-2017, respectively. The national NF (Tg N yr-1) and PF (Tg P yr-1) increased from 1.6 a