https://www.selleckchem.com/products/nvs-stg2.html In briefly, unitization at encoding could improve associative recognition and this effect was moderated by UC, while unitization at retrieval did not affect associative recognition. © 2020 Liu et al.; Published by Cold Spring Harbor Laboratory Press.With a rising aging population, it is important to develop behavioral tasks that assess and track cognitive decline, and to identify protective factors that promote healthy brain aging. Mnemonic discrimination tasks that rely on pattern separation mechanisms are a promising metric to detect subtle age-related memory impairments. Behavioral performance on these tasks rely on the integrity of the hippocampus and surrounding circuitry, which are brain regions known to be adversely affected in aging and neurodegenerative disorders. Aerobic exercise, which improves cardiorespiratory fitness (CRF), has been shown to counteract aging-related decreases in structural and functional brain integrity and attenuate decline of cognitive performance. Here, we tested the hypothesis that higher CRF attenuates age-related deficits in mnemonic discrimination in both a nonspatial mnemonic discrimination (Mnemonic Similarity Task) and a virtual navigation task (Route Disambiguation Task). Importantly, we included individuals across the lifespan (aged 18-83 yr), including the middle-age range, to determine mnemonic discrimination performance across adulthood. Participants completed two mnemonic discrimination tasks and a treadmill test to assess CRF. Our results demonstrate robust negative age-related effects on mnemonic discrimination performance across both the nonspatial and spatial domains. Critically, higher CRF mitigated age-related attenuation in spatial contextual discrimination task performance, but did not show an attenuation effect on performance for object-based mnemonic discrimination. These results suggest that performance on spatial mnemonic discrimination may be a useful tool