https://www.selleckchem.com/products/gsk1838705a.html TN removal performances of waste material-based wetlands were comparable to organic media-based systems. Tidal flow-based MFC wetlands achieved better TN removal than tidal flow wetlands because of supplementary electron production through fuel cell-based organics degradation kinetics. Maximum power production rates across the tidal flow-based MFC wetlands ranged between 53 and 57 mW/m2. Monod kinetics-based continuous stirred tank reactor (CSTR) models predicted NH3-N, TN, and COD removals (in wetland systems) more accurately. Kinetic models confirmed the influence of substrate (i.e., pollutant) and environmental parameters on pollutant removal routes.For safe disposal of wastes in landfills, compacted bentonite is recommended as bottom liners due to their significant cation exchange (CEC) and swelling capacity, low permeability and large specific surface area (SSA). The present investigation carried out various experimental studies determining the compressibility behaviour and unconfined compressive strength (UCS) of two different compacted bentonites in the presence of municipal solid waste (MSW) and synthetic MSW leachates. Various examinations were conducted determining alterations in consolidation parameters like the coefficient of consolidation (cv), time taken for 90% consolidation (t90) and compression index (Cc) with both leachates. The outcomes reveal that Cc and t90 values of both bentonites declined; however, cv value rose. Results also indicated that under any given consolidation pressure, a lesser void ratio was achieved for leachates. UCS of both bentonites reduced with leachates' interaction yet, lying within the recommended a value higher than 200 kPa. A comparative assessment of the two bentonites displayed that bentonite having higher CEC and swelling capacity, and SSA unveiled more excellent Cc and t90 values and a reduction in the UCS. A higher variation in behaviour of bentonites was percei