https://www.selleckchem.com/products/Y-27632.html 1 U/mL after 8 h of fermentation. Sensory evaluation showed that the acceptance of the milk fermented by B. subtilis JNFE0126 was similar to the traditional milk fermented by L. bulgaricus and S. thermophilus. More importantly, oral intake of the fermented milk by the thrombosis-model mice prevented the development of thrombosis. Our results suggest that B. subtilis JNFE0126-fermented milk has potential as a novel, functional food in the prevention of thrombosis-related cardiovascular diseases.In our previous studies, we revealed the effect of lactose inclusion in calf starters on the growth performance and gut development of calves. We conducted the present study as a follow-up study to identify the shift in rumen microbiota and its relation to rumen fermentation when calves are fed a lactose-containing starter. Thirty Holstein bull calves were divided into 2 calf starter treatment groups texturized calf starter (i.e., control; n = 15) or calf starter in which starch was replaced with lactose at 10% (i.e., LAC10; n = 15) on a dry matter basis. All calves were fed their respective treatment calf starter ad libitum from d 7, and kleingrass hay from d 35. Rumen digesta were collected on d 80 (i.e., 3 wk after weaning) and used to analyze rumen microbiota and fermentation products. There was no apparent effect of lactose feeding on the α-diversity and overall composition of rumen microbiota. Amplicon sequencing and real-time PCR quantification of the 16S rRNA gene confirmed that the abundance of butyr in the rumen of lactose-fed calves partially explains the increase in the proportion of rumen acetate that was observed in our previous study.Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as bioactive food compounds and for their use in drug delivery. The utility of small EV in milk (sMEV) as an animal feed additive and in drug delivery would be enhanced by cost-effective