https://www.selleckchem.com/products/bms-986235.html However, there was a change in the content of α-zingiberene to bicyclogermacrene after exposure to light. The visual appearance of the samples was altered for all test conditions except the refrigerator condition. These results can potentially contribute to the product development of a bioactive EO from leaves of P. lhotzkyanum, a sesquiterpene rich natural material.The osteogenic effect of a composite electrospun core-shell nanofiber membrane encapsulated with Emdogain® (EMD) was evaluated. The membrane was developed through coaxial electrospinning using polycaprolactone as the shell and polyethylene glycol as the core. The effects of the membrane on the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) were examined using Alizarin Red S staining and qRT-PCR. Characterization of the nanofiber membrane demonstrated core-shell morphology with a mean diameter of ~1 µm. Examination of the release of fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) from core-shell nanofibers over a 22-day period showed improved release profile of encapsulated proteins as compared to solid nanofibers. When cultured on EMD-containing core-shell nanofibers, PDLSCs showed significantly improved osteogenic differentiation with increased Alizarin Red S staining and enhanced osteogenic gene expression, namely OCN, RUNX2, ALP, and OPN. Core-shell nanofiber membranes may improve outcomes in periodontal regenerative therapy through simultaneous mechanical barrier and controlled drug delivery function.The aim of the systematic review was to analyze the use of combination of bone substitutes and vectors in periodontology and implantology among animals models and humans. Electronic databases were searched, and additional hand search was performed. The research strategy was achieved according to the PRISMA guidelines. The including criteria were combination of bone substitutes and vectors, in vivo studies,