https://www.selleckchem.com/products/AZD2281(Olaparib).html Miltiradiene is a key intermediate in the biosynthesis of many important natural diterpene compounds with significant pharmacological activity, including triptolide, tanshinones, carnosic acid and carnosol. Sufficient accumulation of miltiradiene is vital for the production of these medicinal compounds. In this study, comprehensive engineering strategies were applied to construct a high-yielding miltiradiene producing yeast strain. First, a chassis strain that can accumulate 2.1 g L-1 geranylgeraniol was constructed. Then, diterpene synthases from various species were evaluated for their ability to produce miltiradiene, and a chimeric miltiradiene synthase, consisting of class II diterpene synthase (di-TPS) CfTPS1 from Coleus forskohlii (Plectranthus barbatus) and class I di-TPS SmKSL1 from Salvia miltiorrhiza showed the highest efficiency in the conversion of GGPP to miltiradiene in yeast. Moreover, the miltiradiene yield was further improved by protein modification, which resulted in a final yield of 550.7 mg L-1 in shake flasks and 3.5 g L-1 in a 5-L bioreactor. This work offers an efficient and green process for the production of the important intermediate miltiradiene, and lays a foundation for further pathway reconstruction and the biotechnological production of valuable natural diterpenes. The process of gastric emptying is of major importance for the in vivo performance of immediate release dosage forms. In the fed state, this process consists of two phases the rapid emptying of water along the "Magenstrasse" and the continuous emptying of the chyme. The relevance of these phases for the pharmacokinetic (PK) profile of a drug depends on the release behavior from its dosage form. It was the aim of this study to investigate the role of gastric emptying for the pharmacokinetics of a fast disintegrating and dissolving AspirinĀ® tablet (FDDT). For this purpose, a three way pharmacokinetic study with 30 he