https://www.selleckchem.com/products/zanubrutini-bgb-3111.html We compared two representative forward osmosis (FO) modules-spiral-wound (SW) and plate-and-frame (PF)-to provide practical information for the selection of FO element for a large-scale FO process. The FO operating performance of commercially available SW FO and PF FO was explored under different membrane area and flow rate conditions. The performance trend as a function of the membrane was obtained by adjusting the number of serially connected elements. Although SW FO and PF FO elements exhibited comparable feed pressure drops, SW FO demonstrated a significantly higher draw channel pressure drop than PF FO. Furthermore, the significant draw pressure drop in SW FO increased the draw inlet pressure, consequently limiting the number of serially connected elements. For example, the maximum number of serially connected elements for the normal operation was three elements for SW FO (45.9 m2) but nine elements for PF FO (63 m2) when the flow rate of 10 LMP was applied for feed and draw streams. Additionally, a footprint analysis indicated that SW FO module exhibited a slightly larger footprint than PF FO. Under investigated conditions, PF FO exhibited relatively better performance than SW FO. Therefore, this pilot-scale FO study highlighted the need to reduce the flow resistance of SW FO draw channel to take advantage of the high packing density of the SW element.In recent years, a nano-modification of the cement composites allowed to develop a number of new materials. The use of even small amount of nano-admixture makes possible not only to improve the physico-mechanical properties of the cement materials, but also to obtain the composite with high usability, optimised for the given application. The basic problem of nano-modification of the cement composites remains the effectiveness of dispersing the nanomaterials inside the cement matrix. This paper deals with the effect of the type and size of the nanopart