https://www.selleckchem.com/products/ink128.html Although many Pb2+-selective optodes have been developed so far, methods using optical sensor membranes have not become widespread in environmental analytical practice. In order to create a bulk optode sensor, which can overcome all of the main drawbacks in the application of conventional optode membranes, - i.e., pH-dependence, long response time and the leakage of the ionic components - unusually thick PVC membrane was developed, embedded in microtiter plates and operated on a novel concept. This is the first reported work, which applies a plate-format optode as well as a direct optode-type sensing membrane for determination of Pb2+. We reported here also the first example for the application of an ionic component-free bulk optode membrane to avoid the membrane leakage, improve the regenerability and extend the lifetime of the membrane. The reported sensor has a LOD above 4.0 × 10-7 M (∼83 μg L-1), thus it is unsuitable for the effective monitoring of drinking waters, but considered to be a promising method reported fluorescent probe is considered to be a promising method for replacing atomic absorption spectroscopy- (AAS), anodic stripping voltammetry- (ASV) or inductively coupled plasma- (ICP) based techniques as well as conventional ion-selective bulk membranes in high-throughput preliminary environmental monitoring of Pb2+, as it provides a cheap and unprecedentedly fast qualitative analysis of contaminated surface and wastewaters.This review article traces the history of the use of liquid chromatography coupled with mass spectrometry (LC-MS) using electron ionization (EI) from the first attempts up to the present day. At the time of the first efforts to couple LC to MS, 70 eV EI was the most common ionization technique, typically used in gas chromatography-mass spectrometry (GC-MS) and providing highly reproducible mass spectra that could be collated in libraries. Therefore, it was obvious to transport this dom