Upon assessment of the safety, these strains were negative for hemolytic activity and all tested virulence genes. In vivo safety assessment showed no adverse effects of isolated strains supplementation on the body weight gain and organ indices of the treated mice. This study revealed that these LAB isolates, especially L. salivarius M2-71, possess desirable probiotic properties and have great potentials for the development of feed additives for animals to promote health. Copyright © 2020 Li, Wang, Cui, Li, Sun and Qiu.Japanese encephalitis (JE) is a zoonotic, emerging disease transmitted by mosquito vectors infected with the Japanese encephalitis virus (JEV). Its potential for emergence into susceptible regions is high, including in the United States (US), and is a reason of economic concern among the agricultural community, and to public health due to high morbidity and mortality rates in humans. While exploring the complexities of interactions involved with viral transmission, we proposed a new outlook on the role of vectors, hosts and the environment under changing conditions. For instance, the role of feral pigs may have been underappreciated in our previous work, given research keeps pointing to the importance of susceptible populations of wild swine in naïve regions as key elements for the introduction of emergent vector-borne diseases. High risk of JEV introduction has been associated with the transportation of infected mosquitoes via aircraft. Nonetheless, no JEV outbreaks have been reported in the US to date and results from a qualitative risk assessment considered the risk of establishment to be negligible under the current conditions (environmental, vector, pathogen, and host). In this work, we discuss virus-vector-host interactions and ecological factors important for virus transmission and spread, review research on the risk of JEV introduction to the US considering the implications of risk dismissal as it relates to past experiences with similar arboviruses, and reflect on future directions, challenges, and implications of a JEV incursion. Copyright © 2020 Oliveira, Cohnstaedt, Noronha, Mitzel, McVey and Cernicchiaro.Broiler chickens are highly sensitive to high ambient temperatures due to their feathers, lack of skin sweat glands, and high productivity. Heat stress (HS) is a major concern for the poultry industry because it negatively affects growth as well as immune functions, which increase the potential risk of infectious disease outbreaks. Therefore, it is vital to elucidate HS's effect on the avian immune system, especially considering the global rise in average surface temperature. Our study identified a series of immunological disorders in heat-stressed broiler chickens. We exposed 22-day-old broiler chickens to a continuous HS condition (34.5 ± 0.5°C) for 14 days and immunized them with a prototype bovine serum albumin (BSA) antigen. The plasma and lymphoid tissues (thymus, bursa of Fabricius, and spleen) were harvested at the end of the experiments to investigate the induction of BSA-specific immune responses. Our results revealed that plasma titers of immunoglobulin (Ig)Y, IgM, and IgA antibodies specific for BSA were lower than those of thermoneutral chickens immunized with BSA. Furthermore, the spleens of the heat-stressed broiler chickens displayed severe depression of Bu1+ B cells and CD3+ T cells, including CD4+ T cells and CD8+ T cells, and lacked a fully developed germinal center (GC), which is crucial for B cell proliferation. These immunological abnormalities might be associated with severe depression of CD4-CD8- or CD4+CD8+ cells, which are precursors of either helper or killer T cells in the thymus and Bu1+ B cells in the bursa of Fabricius. Importantly, HS severely damaged the morphology of the thymic cortex and bursal follicles, where functional maturation of T and B cells occur. These results indicate that HS causes multiple immune abnormalities in broiler chickens by impairing the developmental process and functional maturation of T and B cells in both primary and secondary lymphoid tissues. Copyright © 2020 Hirakawa, Nurjanah, Furukawa, Murai, Kikusato, Nochi and Toyomizu.Bovine-viral-diarrhea virus (BVDV) can cause significant economic losses in livestock. https://www.selleckchem.com/products/Decitabine.html The disease is controlled with vaccination and bovines are susceptible until vaccine immunity develops and may remain vulnerable if a persistently infected animal is left on the farm; therefore, an antiviral agent that reduces virus infectivity can be a useful tool in control programs. Although many compounds with promising in-vitro efficacy have been identified, the lack of laboratory-animal models limited their potential for further clinical development. Recently, we described the activity of type I and III interferons, IFN-α and IFN-λ respectively, against several BVDV strains in-vitro. In this study, we analyzed the in-vivo efficacy of both IFNs using a BALB/c-mouse model. Mice infected with two type-2 BVDV field strains developed a viremia with different kinetics, depending on the infecting strain's virulence, that persisted for 56 days post-infection (dpi). Mice infected with the low-virulence strain elicited high systemic TNF-α levels at 2 dpi. IFNs were first applied subcutaneously 1 day before or after infection. The two IFNs reduced viremia with different kinetics, depending on whether either one was applied before or after infection. In a second experiment, we increased the number of applications of both IFNs. All the treatments reduced viremia compared to untreated mice. The application of IFN-λ pre- and post-infection reduced viremia over time. This study is the first proof of the concept of the antiviral potency of IFN-λ against BVDV in-vivo, thus encouraging further trails for a potential use of this cytokine in cattle. Copyright © 2020 Quintana, Barone, Trotta, Turco, Mansilla, Capozzo and Cardoso.The usage of automatic feeding systems (AFS) in cattle offers multiple advantages, mostly due to the possibility of an increased feeding frequency. While it is gaining more and more importance in dairy farming, there is still a lack of experience and scientific knowledge regarding its use in fattening cattle. The aim of this study was to describe the behavior of 56 Simmental bulls fed with an AFS six times daily a total mixed ration. The animals arrived at the farm with an average age of 148 ± 11 days. They were housed in four straw-bedded pens in groups of 14 animals each. Their average slaughter age was 558 ± 20 days. Behavioral observations were made during three observation periods (OP) at an average of 11, 14, and 16 months of age. Using scan sampling, feeding, and lying behavior of all animals and the order of bulls feeding after feed delivery were recorded. Furthermore, body condition and health status were monitored and complemented with the carcass weights. Body condition, health status, and carcass weights of the bulls were found to be satisfactory Mean body condition score increased from 2.