https://www.selleckchem.com/products/ink128.html We investigate, firstly, the competition between the Rashba spin-orbit coupling (SOC) and the intrinsic SOC in Kane-Mele model. For the small intrinsic SOC, we investigate the effects of the Rashba SOC on the touching point of the valence and conduction bands when the ratio of the Rashba SOC to the intrinsic SOC is greater than classical value [Formula see text]. For the large intrinsic SOC, we find that the critical ratio of the two SOCs at which the band touching occurs decreases with the increasing intrinsic SOC and the locations of these touching points deviate from points K and K' of the Brillouin zone. Furthermore, effects of the Rashba SOC on these touching points are discussed in detail when the ratio is greater than the critical value. The Rashba SOC-driven topologically trivial and non-trivial transitions are also obtained in the first part of the work. Secondly, using the slave-rotor mean field method we investigate the influences of the correlation on the Rashba SOC-driven topologically trivial and non-trivial transitions in both the charge condensate and Mott regions. The topological Mott insulator with gapped or gapless spin excitations which arises from the interplay of the Rashba SOC and correlations is obtained in the work.The telecommunication wavelength of λ = 1.5 μm has been playing an important role in various fields. In particular, performing photodetection at this wavelength is challenging, demanding more performance stability and lower manufacturing cost. In this work, upconversion nanoparticle (UCNP)/Si hybrid photodetectors (hybrid PDs) are presented, made by integrating solution-processed Er3+-doped NaYF4 upconversion nanoparticles (UCNPs) onto a silicon photodetector. After optimization, we demonstrated that a layer of UCNPs can well lead to an effective spectral sensitivity extension without sacrificing the photodetection performance of the Si photodetector in the visible and near-infrared